Abstract:
A first rod electrode set has a first center axis, into which ions and air current are introduced. A second rod electrode set has a second center axis at a distance from the first center axis, from which the ions are discharged. A power supply applies voltages to the first rod electrode set and the second rod electrode set. The first rod electrode set and the second rod electrode set have a region where the sets overlap each other in the longitudinal direction, and form a single multipole ion guide by being combined to each other in the region. Different offset DC voltages are applied to the first rod electrode set and the second rod electrode set, respectively, and a DC potential for moving the ions to the second rod electrode set in the region is formed, the ions having been guided by the first rod electrode set.
Abstract:
A mass spectrometer of reduced size and weight is provided which is capable to conduct highly accurate mass spectroscopy. The mass spectrometer includes an ion source adapted to ionize gas flowing in from outside in order to ionize a measurement sample and a mass spectroscopy section for separating the ionized measurement sample. The ion source has its interior reduced in pressure by differential pumping from the mass spectroscopy section and ionizes the gas when the interior pressure rises as it inhales the gas, and the mass spectroscopy section separates the ionized measurement sample when its interior pressure falls after inhale of the gas. The mass spectrometer may further include a restriction device for suppressing a flow rate of the gas the ion source inhales and an open/close device for opening and closing a flow of the gas the ion source inhales.
Abstract:
A mass spectrometer device comprising an ion mobility separation device and a mass spectrometer that are coupled together. In order to achieve high efficiency, high throughput, and high sensitivity, the mass spectrometer is provided with: a first flow passageway 24 through which ions from an ion source 1 are introduced into the mass spectrometer 11 by passing through an ion mobility separation unit 2; a second flow passageway 21 through which the ions from the ion source are introduced into the mass spectrometer without passing through the ion mobility separation unit; and a switch means, such as shield units 4, 5, for switching between the first flow passageway 24 and the second flow passageway 21.
Abstract:
For increasing a speed of fragmentation of a sample, such as a protein and a peptide, to enhance introduction efficiency into a detector, such as a mass spectrometer, a liquid feeding pump 2, a sample injector 3, and a separation column 6 that are connected via pipes are included, and further, a heating unit 4 for heating a pipe between the sample injector 3 and the separation column 6, and a pressure regulating unit 5 provided between the heating unit 4 and the separation column 6 for regulating the inner pressure of the pipe heated by the heating unit 4, are included.
Abstract:
In order to provide an ion source that can be easily switched with high sensitivity and in a short time, the ion source includes an ionization probe for spraying a sample, a heating chamber for heating and vaporizing a sample; and driving portions and for changing the distance between an outlet end (i.e., an end on the spray side) of the ionization probe and an inlet end (i.e., an end on the ionization probe side) of the heating chamber. The positions of the ionization probe and the heating chamber are controlled by the driving portions so that an ionization region that uses the ionization probe or an ionization region that uses the heating chamber is positioned near the ion inlet port of the mass spectrometer.
Abstract:
A first rod electrode set has a first center axis, into which ions and air current are introduced. A second rod electrode set has a second center axis at a distance from the first center axis, from which the ions are discharged. A power supply applies voltages to the first rod electrode set and the second rod electrode set. The first rod electrode set and the second rod electrode set have a region where the sets overlap each other in the longitudinal direction, and form a single multipole ion guide by being combined to each other in the region. Different offset DC voltages are applied to the first rod electrode set and the second rod electrode set, respectively, and a DC potential for moving the ions to the second rod electrode set in the region is formed, the ions having been guided by the first rod electrode set.
Abstract:
An ion analysis device includes: an ion source that ionizes an analyte in a liquid sample; an ion guide into which droplets and ions produced in the ion source are introduced, the ion guide having different outlets, one outlet being an ion outlet for the ions and the other outlet being a droplet outlet for the droplets; an ion analysis unit that analyzes ions ejected from the ion outlet; a droplet measurement unit that is placed on an axis of the droplet outlet, and measures the amount of droplets; and an analysis control section that compares the amount of droplets measured at the droplet measurement unit with a threshold.
Abstract:
A mass spectrometry device that can perform highly robust, highly sensitive, and low-noise analysis and addresses the problems of preventing reductions in ion transfer efficiency and of suppressing the introduction of noise components from droplets, etc. An ion source generates ions, a vacuum chamber is evacuated by an evacuation means and for analyzing the mass of ions, and an ion introduction electrode introduces ions into the vacuum chamber. The ion introduction electrode has an ion-source-side front-stage pore, a vacuum-chamber-side rear-stage pore, and an intermediate pressure chamber between the front-stage pore and the rear-stage pore, the cross-sectional area of an ion inlet of the intermediate pressure chamber is larger than the cross-sectional area of the front-stage pore, the position of the central axis of the front-stage pore and the position of the central axis of the rear-stage pore are eccentric, and the cross-sectional area of an ion outlet of the intermediate pressure chamber is smaller than the cross-sectional area of the ion inlet.
Abstract:
Provided is an ion source achieving high sensitivity and high robustness while executing a plurality of types of ionization schemes. To this end, a hybrid ion source (1) includes: a chamber (24); a first ion source (2) to spray a sample solution (5) for ionization; a second ion source (3) to ionize droplets and/or a gas component sprayed from the first ion source (2); a first electrode (11) to introduce a first ion (7) generated by the first ion source (2), and a second ion generated by the second ion source (3); and an exhaust pump (27) that generates air flow (26) in a direction from a first space area (23) where the first ion (7) is generated to a second space area (19) in the second ion source (3) where the second ion is generated.
Abstract:
An analysis system is provided with: a storage unit that stores first information associating mass spectrometry result information with an analysis condition concerning ion mobility separation; and a control unit that determines, as a first analysis condition for an ion to be measured, the analysis condition associated with the mass spectrometry result information of the first information corresponding to the mass spectrometry result information of the ion to be measured.