Abstract:
An engine system may include a first intake line configured to supply external air to an intake manifold mounted in a cylinder block of an engine, an intake bypass valve disposed on the first intake line, a second intake line configured to bypass the intake bypass valve, a first exhaust line, through which exhaust gas discharged from an exhaust manifold mounted in the cylinder block flows, an exhaust bypass valve disposed on the first exhaust line, a second exhaust line configured to bypass the exhaust bypass valve, a turbo charger operated by exhaust gas passing through the second exhaust line, and configured to pump intake air flowing in the second intake line, a controller configured to control the intake bypass valve and the exhaust bypass valve, and a turbine housing configured to surround a turbine of the turbo charger. The turbine housing may be made of a material the same as that of a cylinder head of the engine.
Abstract:
An engine system may include: an engine including cylinders that generate a driving torque by combusting fuel; a first intake manifold connected to an intake line through which flows intake air into some of the plurality of cylinders; a second intake manifold supplying the intake air to the other cylinders of the plurality of cylinders through the first intake manifold; a first exhaust manifold connected to some cylinders that are connected to the first intake manifold; a second exhaust manifold connected to some other cylinders that are connected to the second intake manifold; a recirculation line branched from the second exhaust manifold to be coupled to the second intake manifold; a recirculation inlet valve disposed at a point at which the recirculation line and the second exhaust manifold are joined; and a manifold connection valve disposed on an intake line between the first intake manifold and the second intake manifold.
Abstract:
An engine system includes: an engine having a combustion chamber generating a driving torque by combust of a fuel; a plurality of intake lines through which outside air flows to the combustion chamber; an exhaust manifold connected to the combustion chamber at an exhaust side; at least two electric superchargers disposed on the plurality of intake lines, respectively; and an exhaust gas recirculation (EGR) system including a recirculation line branched from the exhaust manifold and joined to one of the plurality of intake lines and a recirculation valve disposed on the recirculation line.
Abstract:
An engine system may include an engine having an intake line flowing an intake gas supplied to the combustion chambers; an intake manifold; a throttle valve provided at a front of the intake manifold and controlling an air amount supplied to the combustion chamber; an electric supercharger provided at the throttle valve and including a motor and an electric compressor operated by the motor to supply the supercharged air to the combustion chamber; an exhaust gas processing device purifying an exhaust gas generated in the combustion chamber; and an exhaust gas recirculation device including a recirculation line branched from the downstream portion of the exhaust gas processing device and joined to the intake line of the upstream portion of the electric compressor, an EGR cooler mounted at the recirculation line, and an EGR valve mounted at a part where the recirculation line and the intake line are joined.
Abstract:
An engine system includes an engine including a plurality of cylinders generating driving torque by combustion of fuel, a cylinder deactivation apparatus (CDA) disposed at one or more of the plurality of cylinders for selectively deactivating the one or more of the plurality of cylinders, a first exhaust manifold connected to cylinders at which the CDA apparatus is disposed, a second exhaust manifold connected to cylinders at which the CDA apparatus is not disposed, a turbocharger including a turbine rotated by exhaust gas exhausted from the first exhaust manifold, and further including a compressor rotated together with the turbine for compressing air supplied to the cylinders, and an electric supercharger including a motor and an electric compressor operated by the motor for supplying compressed air to the cylinders.
Abstract:
An engine system includes: an engine including a plurality of combustion chambers generating driving torque by combustion of fuel; an exhaust gas purification apparatus installed at an exhaust line in which exhaust gas exhausted from the combustion chambers flows; a bypass line branched from the exhaust line at an upstream side of the exhaust gas purification apparatus and joining the exhaust line at a downstream side of the exhaust gas purification apparatus so that the exhaust gas flowing in the exhaust line bypasses the exhaust gas purification apparatus; and a bypass valve installed at the bypass line.
Abstract:
An engine system includes an engine including one or more cylinders for generating a driving torque, a plurality of intake lines for supplying external air to the one or more cylinders, and one or more electric superchargers disposed on, or in, the plurality of intake lines.
Abstract:
An apparatus for controlling an engine includes an engine including a plurality of combustion chambers for generating driving torque by burning a fuel, a high-capacity turbocharger including a turbine rotated by the exhaust gas exhausted from the combustion chambers and a compressor rotated together with the turbine for compressing exhaust gas exhausted from the combustion chamber, an electric supercharger including a motor and an electric compressor operated by the motor, a throttle valve for adjusting an intake air amount supplied to the combustion chamber, a driving information detector for detecting driving information including a required torque and an engine speed, and a controller for determining a driving region of the engine from the driving information detected by the driving information detector, and controlling engine torque by adjusting an opening of the throttle valve and an output of the motor according to the driving region of the engine.
Abstract:
A method for controlling an exhaust gas recirculation (EGR) system which is provided with an intake throttle valve and an EGR valve driven by a motor may include detecting an engine speed and an amount of intake air for each cylinder of an engine while the engine is operating, determining an amount of air flow supplied to the engine based on the engine speed and the amount of intake air for each cylinder, determining an equivalent cross-section of the EGR valve based on the amount of air flow, determining an opening angle of the EGR valve based on the engine speed, the amount of intake air for each cylinder, the amount of air flow, and the equivalent cross-section of the EGR valve, and controlling the EGR valve according to the opening angle of the EGR valve.
Abstract:
An engine system having a secondary air injection device include: an engine having a plurality of cylinders; a first intake line in which intake air supplied into the cylinder flows; a second intake line in which intake air supplied into the cylinder flows; a bypass line connecting the first intake line and the second intake line; a first electric supercharger and a second electric supercharger disposed in the first intake line and the second intake line, respectively; an exhaust manifold connected with the plurality of cylinders; an exhaust line connected with the exhaust manifold such that exhaust gas flows to the exhaust line through the exhaust manifold; an exhaust gas purification device disposed in the exhaust line; and a secondary air injection device injecting air into the exhaust manifold or the exhaust line from the intake line.