摘要:
A metal CVD process includes a step (A) of introducing a gaseous source material containing a metal carbonyl compound into a process space adjacent to a surface of a substrate to be processed in such a manner that the metal carbonyl compound has a first partial pressure, and a step (B) of depositing a metal film on the surface of the substrate by introducing a gaseous source material containing the metal carbonyl compound into the process space in such a mater that the metal carbonyl compound has a second, smaller partial pressure. The step (A) is conducted such that there is caused no substantial deposition of the metal film on the substrate.
摘要:
A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
摘要:
A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
摘要:
A method for depositing metal layers with good surface morphology using sequential flow deposition includes alternately exposing a substrate in a process chamber to a metal-carbonyl precursor gas and a reducing gas. During exposure with the metal-carbonyl precursor gas, a thin metal layer is deposited on the substrate, and subsequent exposure of the metal layer to the reducing gas aids in the removal of reaction by-products from the metal layer. The metal-carbonyl precursor gas and a reducing gas exposure steps can be repeated until a metal layer with a desired thickness is achieved. The metal-carbonyl precursor can, for example, be selected from W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process includes introducing a process gas containing a metal carbonyl precursor in a process chamber and depositing a metal layer on a substrate. The TCVD process utilizes a short residence time for the gaseous species in the processing zone above the substrate to form a low-resistivity metal layer. In one embodiment of the invention, the metal carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12 precursors. In another embodiment of the invention, a method is provided for depositing low-resistivity W layers at substrate temperatures below about 500° C., by utilizing a residence time less than about 120 msec.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process. The TCVD process utilizes high flow rate of a dilute process gas containing a metal-carbonyl precursor to deposit a metal layer. In one embodiment of the invention, the metal-carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12. In another embodiment of the invention, a method is provided for depositing a W layer from a process gas comprising a W(CO)6 precursor at a substrate temperature of about 410° C. and a chamber pressure of about 200 mTorr.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process. The TCVD process utilizes high flow rate of a dilute process gas containing a metal-carbonyl precursor to deposit a metal layer. In one embodiment of the invention, the metal-carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12. In another embodiment of the invention, a method is provided for depositing a W layer from a process gas comprising a W(CO)6 precursor at a substrate temperature of about 410° C. and a chamber pressure of about 200 mTorr.
摘要翻译:一种通过热化学气相沉积(TCVD)工艺在半导体衬底上沉积金属层的方法。 TCVD工艺利用含有羰基金属前体的稀释工艺气体的高流速来沉积金属层。 在本发明的一个实施方案中,羰基金属前体可以选自W(CO)6,Ni(CO)4,Mo(CO)6,Co 2(CO)8,Rh 4(CO)12, Re 2(CO)10,Cr(CO)6和Ru 3(CO)12)。 在本发明的另一个实施方案中,提供了一种方法,用于在约410℃的基底温度和约200mTorr的室压下从包含W(CO)6前体的工艺气体中沉积W层。
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process includes introducing a process gas containing a metal carbonyl precursor in a process chamber and depositing a metal layer on a substrate. The TCVD process utilizes a short residence time for the gaseous species in the processing zone above the substrate to form a low-resistivity metal layer. In one embodiment of the invention, the metal carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12 precursors. In another embodiment of the invention, a method is provided for depositing low-resistivity W layers at substrate temperatures below about 500° C., by utilizing a residence time less than about 120 msec.
摘要:
A method of forming a metal film using a metal carbonyl compound as a material is disclosed that includes the steps of: (a) introducing a reactive gas into a space near a surface of a substrate to be processed; and (b) introducing a gaseous phase material including the metal carbonyl compound into the space on the surface of the substrate to be processed, and depositing the metal film on the surface of the substrate to be processed after step (a). Step (a) is executed in such a manner as to prevent substantial deposition of the metal film on the substrate to be processed.
摘要:
A method of forming a metal film using a metal carbonyl compound as a material is disclosed that includes the steps of: (a) introducing a reactive gas into a space near a surface of a substrate to be processed; and (b) introducing a gaseous phase material including the metal carbonyl compound into the space on the surface of the substrate to be processed, and depositing the metal film on the surface of the substrate to be processed after step (a). Step (a) is executed in such a manner as to prevent substantial deposition of the metal film on the substrate to be processed.