摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process includes introducing a process gas containing a metal carbonyl precursor in a process chamber and depositing a metal layer on a substrate. The TCVD process utilizes a short residence time for the gaseous species in the processing zone above the substrate to form a low-resistivity metal layer. In one embodiment of the invention, the metal carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12 precursors. In another embodiment of the invention, a method is provided for depositing low-resistivity W layers at substrate temperatures below about 500° C., by utilizing a residence time less than about 120 msec.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process. The TCVD process utilizes high flow rate of a dilute process gas containing a metal-carbonyl precursor to deposit a metal layer. In one embodiment of the invention, the metal-carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12. In another embodiment of the invention, a method is provided for depositing a W layer from a process gas comprising a W(CO)6 precursor at a substrate temperature of about 410° C. and a chamber pressure of about 200 mTorr.
摘要:
A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process includes introducing a process gas containing a metal carbonyl precursor in a process chamber and depositing a metal layer on a substrate. The TCVD process utilizes a short residence time for the gaseous species in the processing zone above the substrate to form a low-resistivity metal layer. In one embodiment of the invention, the metal carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12 precursors. In another embodiment of the invention, a method is provided for depositing low-resistivity W layers at substrate temperatures below about 500° C., by utilizing a residence time less than about 120 msec.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process. The TCVD process utilizes high flow rate of a dilute process gas containing a metal-carbonyl precursor to deposit a metal layer. In one embodiment of the invention, the metal-carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12. In another embodiment of the invention, a method is provided for depositing a W layer from a process gas comprising a W(CO)6 precursor at a substrate temperature of about 410° C. and a chamber pressure of about 200 mTorr.
摘要翻译:一种通过热化学气相沉积(TCVD)工艺在半导体衬底上沉积金属层的方法。 TCVD工艺利用含有羰基金属前体的稀释工艺气体的高流速来沉积金属层。 在本发明的一个实施方案中,羰基金属前体可以选自W(CO)6,Ni(CO)4,Mo(CO)6,Co 2(CO)8,Rh 4(CO)12, Re 2(CO)10,Cr(CO)6和Ru 3(CO)12)。 在本发明的另一个实施方案中,提供了一种方法,用于在约410℃的基底温度和约200mTorr的室压下从包含W(CO)6前体的工艺气体中沉积W层。
摘要:
A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
摘要:
A semiconductor device manufacturing method includes: modifying a surface of a burying recess, of which surface is hydrophobic and which is formed in a dielectric film, to a hydrophilic state by supplying a plasma containing H ions and H radicals or a plasma containing NHx (x being 1, 2 or 3) ions and NHx radicals to the dielectric film formed on a substrate and containing silicon, carbon, hydrogen and oxygen, a bottom portion of the burying recess being exposed with a lower conductive layer; and directly forming an adhesion film formed of a Ru film on the hydrophilic surface of the recess. The method further includes burying copper forming a conductive path in the recess.
摘要:
A metal recovery apparatus recovers metal components from an exhaust gas exhausted from a processing chamber in which a thin film is formed on the surface of a target substrate by using a source gas formed of an organic metal compound serving as a source, and scrubs the exhaust gas. The metal recovery apparatus 66 includes a trap unit having an adsorption member for attaching thereon metal components included in the source gas by heating the exhaust gas and thus thermally decomposing an unreacted source gas included in the exhaust gas; and the scrubbing unit including a catalyzer for oxidizing and thus scrubbing harmful gas components included in the exhaust gas that has flowed through the trap unit.
摘要:
Disclosed is a method for film formation, characterized by comprising allowing a treatment gas stream containing a metal carbonyl-containing treatment gas and a carbon monoxide-containing carrier gas to flow into a region on the upper outside of the outer periphery of a substrate to be treated in a diameter direction of the substrate while avoiding the surface of the substrate and diffusing the metal carbonyl from the treatment gas stream into the surface of the substrate to form a metal film on the surface of the substrate.
摘要:
A raw material recovery method for recovering a raw material of an organic metallic compound, which has the property of being stable toward a specific refrigerant without being decomposed thereby, from exhaust gas discharged from a treatment container in which a metallic thin film is formed on the surface of an object to be treated by using source gas obtained by vaporizing the raw material is characterized by being provided with a solidification step for solidifying the unreacted source gas by cooling the exhaust gas by bringing the exhaust gas into contact with the refrigerant and reprecipitating the raw material, and a recovery step for separating and recovering the raw material reprecipitated in the solidification step from the refrigerant. To provide a method for controlling an exhaust gas flow rate so that flow of gas in a processing chamber becomes uniform.