摘要:
A method for depositing metal layers with good surface morphology using sequential flow deposition includes alternately exposing a substrate in a process chamber to a metal-carbonyl precursor gas and a reducing gas. During exposure with the metal-carbonyl precursor gas, a thin metal layer is deposited on the substrate, and subsequent exposure of the metal layer to the reducing gas aids in the removal of reaction by-products from the metal layer. The metal-carbonyl precursor gas and a reducing gas exposure steps can be repeated until a metal layer with a desired thickness is achieved. The metal-carbonyl precursor can, for example, be selected from W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12.
摘要:
A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process includes introducing a process gas containing a metal carbonyl precursor in a process chamber and depositing a metal layer on a substrate. The TCVD process utilizes a short residence time for the gaseous species in the processing zone above the substrate to form a low-resistivity metal layer. In one embodiment of the invention, the metal carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12 precursors. In another embodiment of the invention, a method is provided for depositing low-resistivity W layers at substrate temperatures below about 500° C., by utilizing a residence time less than about 120 msec.
摘要:
A method for depositing metal layers on semiconductor substrates by a thermal chemical vapor deposition (TCVD) process. The TCVD process utilizes high flow rate of a dilute process gas containing a metal-carbonyl precursor to deposit a metal layer. In one embodiment of the invention, the metal-carbonyl precursor can be selected from at least one of W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12. In another embodiment of the invention, a method is provided for depositing a W layer from a process gas comprising a W(CO)6 precursor at a substrate temperature of about 410° C. and a chamber pressure of about 200 mTorr.
摘要翻译:一种通过热化学气相沉积(TCVD)工艺在半导体衬底上沉积金属层的方法。 TCVD工艺利用含有羰基金属前体的稀释工艺气体的高流速来沉积金属层。 在本发明的一个实施方案中,羰基金属前体可以选自W(CO)6,Ni(CO)4,Mo(CO)6,Co 2(CO)8,Rh 4(CO)12, Re 2(CO)10,Cr(CO)6和Ru 3(CO)12)。 在本发明的另一个实施方案中,提供了一种方法,用于在约410℃的基底温度和约200mTorr的室压下从包含W(CO)6前体的工艺气体中沉积W层。
摘要:
A method and a processing tool are provided for forming a metal layer with improved morphology on a substrate. The method includes pre-treating the substrate by exposing the substrate to excited species in a plasma, exposing the pre-treated substrate to a process gas containing a metal-carbonyl precursor, and forming a metal layer on the pre-treated substrate surface by a chemical vapor deposition process. The metal-carbonyl precursor can contain W(CO)6, Ni(CO)4, Mo(CO)6, CO2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, or Ru3(CO)12 or any combination thereof, and the metal layer can contain W, Ni, Mo, Co, Rh, Re, Cr, or Ru, or any combination thereof, respectively.
摘要:
A metal CVD process includes a step (A) of introducing a gaseous source material containing a metal carbonyl compound into a process space adjacent to a surface of a substrate to be processed in such a manner that the metal carbonyl compound has a first partial pressure, and a step (B) of depositing a metal film on the surface of the substrate by introducing a gaseous source material containing the metal carbonyl compound into the process space in such a mater that the metal carbonyl compound has a second, smaller partial pressure. The step (A) is conducted such that there is caused no substantial deposition of the metal film on the substrate.
摘要:
A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
摘要:
Disclosed is a technique for embedding metal in a recess provided in the surface of a process object, such as a semiconductor wafer W, only by plasma sputtering. The metal is copper as a typical example. The recess has a microscopic hole or trench having a diameter or width of 100 nm or less as a typical example. A film forming step and a diffusion step are alternately performed a plurality of times. The film forming step deposits a small amount of a metal film in the recess. The diffusion step moves the deposited metal film toward the bottom portion of the recess. In the film forming step, bias power to be applied to a stage for supporting the wafer W is set to a value ensuring that, on the surface of the wafer W, the rate of metal deposition due to the drawing-in of metal particles is substantially equal to the rate of the sputter etching by plasma. In the diffusion step, the wafer W is maintained at a temperature which permits occurrence of surface diffusion of the metal film deposited in the recess.
摘要:
The invention is related to A seed film forming method capable of forming a seed film in recesses without forming overhangs.The seed film forming method of depositing a seed film for plating includes the steps of: producing metal ions by ionizing a metal target with a plasma in a processing vessel that can be evacuated; and depositing a metal film on a surface provided with recesses of a workpiece mounted on a stage placed in the processing vessel by supplying bias power to the workpiece to attract the metal ions to the workpiece; wherein a film deposition step of depositing the metal film by using the bias power determined so that the metal film deposited on the surface of the workpiece may not be sputtered, and a film deposition interrupting step of interrupting the deposition of the metal film by stopping producing the metal ions are repeated alternately by a number of cycles.
摘要:
A technique for embedding metal in a microscopic recess provided in the surface of a process object, such as a semiconductor wafer, by plasma sputtering. A film forming step and a diffusion step are alternately performed a plurality of times. The film forming step deposits a small amount of metal film in the recess. The diffusion step moves the deposited metal film towards the bottom portion of the recess. In the film forming step, bias power to be applied to a stage for supporting the wafer is set to a value ensuring that, on the surface of the wafer, the rate of metal deposition due to the drawing-in of metal particles is substantially equal to the rate of the sputter etching by plasma. In the diffusion step, the wafer is maintained at a temperature which permits occurrence of surface diffusion of the metal film deposited in the recess.