Abstract:
A nonvolatile memory device having a first resistive element coupled between a common node and a bit line; a second resistive element coupled between the common node and a word line; and a pass transistor having a gate coupled to the common node, a first node coupled to a reference voltage, and a second node coupled to an output, wherein the word line is orthogonal to the bit line.
Abstract:
In various embodiments, a chip for a chip package is provided. The chip may include a substrate and an integrated circuit over the substrate. The integrated circuit may include a test circuit, for example a built-in self-test circuit, and an operation circuit, the test circuit including one or more first driver stages each having a first driver performance and the operation circuit including one or more second driver stages each having a second driver performance which is different from the first driver performance, first contacts electrically coupled with the first driver stages, and second contacts electrically coupled with the second driver stages, wherein the test circuit and the first contacts are configured to provide a test mode for testing the integrated circuit and wherein the operation circuit and the second contacts are configured to provide an operating mode of the integrated circuit being different from the test mode.
Abstract:
A nonvolatile memory device having a first resistive element coupled between a common node and a bit line; a second resistive element coupled between the common node and a word line, wherein the first and second resistive elements are coupled between different metal layers; and a pass transistor having a gate coupled to the common node, a first node coupled to a reference voltage, and a second node coupled to an output, wherein the word line is orthogonal to the bit line.
Abstract:
A method for applying a magnetic shielding layer to a substrate is provided, wherein a first magnetic shielding layer is adhered to a first surface of the substrate. A first film layer is adhered to the first magnetic shielding layer and the first magnetic shielding layer is more adherent to the first surface than the film layer to the first magnetic shielding layer.
Abstract:
A memory having an array of perpendicular spin-transfer torque (STT) magnetic random access memory (MRAM) cells, wherein each cell has a magnetic layer stack. A magnetic shield disposed between the cells and having a minimum height of at least the height of the magnetic layer stacks.
Abstract:
In various embodiments, a chip for a chip package is provided. The chip may include a substrate and an integrated circuit over the substrate. The integrated circuit may include a test circuit, for example a built-in self-test circuit, and an operation circuit, the test circuit including one or more first driver stages each having a first driver performance and the operation circuit including one or more second driver stages each having a second driver performance which is different from the first driver performance, first contacts electrically coupled with the first driver stages, and second contacts electrically coupled with the second driver stages, wherein the test circuit and the first contacts are configured to provide a test mode for testing the integrated circuit and wherein the operation circuit and the second contacts are configured to provide an operating mode of the integrated circuit being different from the test mode.
Abstract:
A method for updating a memory, which comprises several blocks, wherein each of the several blocks comprises multi-level cells and is operable in an MLC-mode or in a SLC-mode, wherein each multi-level cell may store more than one bit, wherein the method includes for each block to be updated: (a) copying the content of the block to a buffer block; (b) erasing the block; (c) writing the content of the block from the buffer block and an updated content for this block to this block, utilizing the capability of the block to be operated in the MLC-mode; (d) copying the updated content of the block to the buffer block; (e) erasing the block; and (f) writing the updated content from the buffer block to the block, utilizing the capability of the block to be operated in the SLC-mode. Also, therefore is a corresponding device.
Abstract:
A method for updating a memory, which comprises several blocks, wherein each of the several blocks comprises multi-level cells and is operable in an MLC-mode or in a SLC-mode, wherein each multi-level cell may store more than one bit, wherein the method includes for each block to be updated: (a) copying the content of the block to a buffer block; (b) erasing the block; (c) writing the content of the block from the buffer block and an updated content for this block to this block, utilizing the capability of the block to be operated in the MLC-mode; (d) copying the updated content of the block to the buffer block; (e) erasing the block; and (f) writing the updated content from the buffer block to the block, utilizing the capability of the block to be operated in the SLC-mode. Also, therefore is a corresponding device.
Abstract:
A memory having an array of perpendicular spin-transfer torque (STT) magnetic random access memory (MRAM) cells, wherein each cell has a magnetic layer stack. A magnetic shield disposed between the cells and having a minimum height of at least the height of the magnetic layer stacks.
Abstract:
A method for applying a magnetic shielding layer to a substrate is provided, wherein a first magnetic shielding layer is adhered to a first surface of the substrate. A first film layer is adhered to the first magnetic shielding layer and the first magnetic shielding layer is more adherent to the first surface than the film layer to the first magnetic shielding layer.