Abstract:
Provided is a high-speed ring optical modulator based on a silicon semiconductor, having increased optical modulation speed. The high-speed ring optical modulator includes a ring optical waveguide including a portion in which the refractive index varies, that is, a refractive index variation portion, and an optical waveguide having a constant refractive index. The refractive index variation portion comprises a bipolar transistor. Thus carriers can be supplied to and discharged from the refractive index variation portion, through which light is transmitted, at high speed, and thus the optical modulation speed can be increased.
Abstract:
Disclosed is a multi-channel receiver optical sub assembly. The a multi-channel receiver optical sub assembly includes: a multi-channel PD array, in which a plurality of photodiodes (PDs) disposed on a first capacitor, and including receiving areas disposed at centers thereof and anode electrode pads arranged in an opposite direction at an angle of 180 degrees based on the receiving areas between the adjacent PDs is monolithically integrated; a plurality of transimpedance amplifiers (TIAs) arranged on a plurality of second capacitors, respectively, and connected with the anode pads of the respective PDs through wire bonding; a submount on which the first capacitor.
Abstract:
A method and apparatus for sound source localization using microphones are disclosed. The method includes: receiving signals coming from a sound source through microphones covering all directions; distinguishing the received signals into those signals directly input to the microphones from the sound source (direct signals) and those signals indirectly input to the microphones (indirect signals); identifying a candidate region at which the sound source is present using locations of the microphones receiving direct signals; selecting a point in the candidate region as a candidate location; drawing one or more virtual tangent lines, contacting with the circumference of the apparatus, from the candidate location; placing locations of the microphones receiving indirect signals on the virtual tangent lines; and localizing the sound source on the basis of signals passing through the microphones receiving direct signals and through the virtual locations of the microphones receiving indirect signals.
Abstract:
An optical amplifier includes a passive waveguide region and an active waveguide region. The passive waveguide region is configured to receive an incident optical signal and adjust a mode of the optical signal. The active waveguide region is integrated to the passive waveguide region and configured to perform gain modulation on the optical signal received from the passive waveguide region by changing density of carriers in response to a current applied to the active waveguide region. Internal loss of the active waveguide region is adjusted to produce a resonance effect and thereby to increase bandwidth of the active waveguide. Therefore, the optical amplifier can have a wide bandwidth under a low-current condition.
Abstract:
Provided is a wavelength tunable external cavity laser (laser beam) generating device. The wavelength tunable external cavity laser generating devices includes: an optical amplifier, a comb reflector, and an optical signal processor connected in series on a first substrate; and an external wavelength tunable reflector disposed on a second substrate adjacent to the first substrate and connected to the optical amplifier, wherein the comb reflector includes: a waveguide disposed on the first substrate; a first diffraction grating disposed at one end of the waveguide adjacent to the optical amplifier; and a second diffraction grating disposed at the other end of the waveguide adjacent to the optical signal processor, wherein the optical amplifier, the comb reflector, and the optical signal processor constitute a continuous waveguide.
Abstract:
Provided is a media deposit apparatus including: a deposit transfer portion providing a deposit circulation path of media deposited via a media deposit portion; a temporary transfer portion providing a temporary circulation path that contacts with the deposit circulation path to transfer the media to a temporary stack portion, and including a temporary stack gate, provided between the deposit circulation path and the temporary circulation path, to selectively convert a path of media to the temporary circulation path; and a media transfer portion providing a media transfer path that contacts with the temporary circulation path to transfer the media to a media storage portion, and including a media storage gate, provided between the temporary circulation path and the media transfer path, to selectively convert the path of media to the media transfer path. Accordingly, it is possible to simplify a media transfer structure and to enhance a media transfer efficiency.
Abstract:
A method of manufacturing a light emitting device includes: forming a plurality of independent light emitting portions on a growth substrate; separating the light emitting portions from the growth substrate; mounting the light emitting portions onto a receiving substrate; and dicing the receiving substrate, onto which the light emitting portions are mounted, into a light emitting unit. Residual stress, which occurs when the light emitting portions are separated from the substrate, can be reduced, and the light emitting portions can be mounted onto the receiving substrate in a fluid state, whereby the light emitting device can be easily mass produced with excellent quality, and its manufacturing costs can be reduced.
Abstract:
Provided is an optical device module that can improve miniaturization and integration. The optical device module includes a semiconductor optical amplifier having a buried structure and including a first active layer buried in a clad layer disposed on a first substrate, an optical modulator in which a sidewall of a second active layer disposed in a direction of the first active layer on a second substrate junctioned to the first substrate is exposed, the optical modulator having a ridge structure, and at least one multi-mode interference coupler in which the second active layer junctioned to the first active layer is buried in the clad layer, the multi-mode interference coupler sharing the second active layer on the second substrate between the optical modulator and the semiconductor optical amplifier and integrated with the second optical device.
Abstract:
Provided are a high-efficiency solar cell, which converts light energy of incident light into electrical energy, and a method of manufacturing the same. An upper ohmic layer is formed at a predetermined tilt angle less than 45° and an ohmic electrode is deposited on the upper ohmic layer so as to reduce shadow loss due to the ohmic electrode and lessen contact resistance.
Abstract:
The present invention provides a light emitting keypad having a very slim light guide film, and a light guide film for a keypad backlight. Particularly, a reflection layer is formed on a lower portion of the light guide film, resulting in more improved luminance. According to the present invention, the introduction of an EL sheet is eliminated, substantial slimness is achieved as compared with a direct illumination type keypad, high luminance is obtained by introducing a reflection layer even though a small number of light sources are used, and a light emitting surface can be provided for intensive light emission onto key regions of a keypad by forming a predetermined pattern on at least one surface of the light guide film.