Abstract:
Lens alignment apparatuses, methods and optical devices are disclosed. In accordance with various embodiments, a lens alignment apparatus may include at least one lens element positioned in a lens body. A lens alignment interface coupled to the lens element may be configured to permit the lens element to be angularly deflected relative to an axis of symmetry of the lens body. In other embodiments, a method of improving the resolution of an optical device may include translating a lens along an optical axis to maximize resolution at a first location, and determining a resolution in a second location in the imaging plane. The resolution in the second location may be improved by angularly deflecting the lens, and the position of the lens may then be fixed.
Abstract:
A wafer-level camera sensor package includes a semiconductor substrate with an optical sensor on a front surface. Through-silicon-vias (TSV) extend through the substrate and provide I/O contact with the sensor from the back side of the substrate. A glass cover is positioned over the front surface, and the cover and substrate are embedded in a molding compound layer (MCL), the front surface of the MCL lying coplanar with the front of the cover, and the back surface lying coplanar with the back of the substrate. Surface-mount devices, electromagnetic shielding, and through-wafer-connectors can be embedded in the MCL. A redistribution layer on the back surface of the MCL includes bottom contact pads for mounting the package, and conductive traces interconnecting the contact pads, TSVs, surface-mount devices, shielding, and through-wafer-connectors. Anisotropic conductive adhesive is positioned on the front of the MCL for physically and electrically attaching a lens array.
Abstract:
A chip scale package (CSP) device includes a CSP having a semiconductor die electrically coupled to a plurality of solder balls. A can having an inside top surface and one or more side walls defines a chamber. The CSP is housed in the chamber and is attached to the inside top surface of the can. A printed circuit board is attached to the solder balls and to the one or more side walls to provide support to the CSP and to the can. The CSP may be a Wafer-Level CSP. The can may be built from a metallic substance or from a non-metallic substance. The can provides stress relief to the CSP during a drop test and during a thermal cycle test.
Abstract:
An optical sensor package has a transparent substrate with a redistribution layer formed on a face thereof, which includes a window and a plurality of electrically conductive traces. A semiconductor substrate, including an optical sensor and a plurality of contact terminals on a face thereof, is positioned on the transparent substrate in a face-to-face arrangement, with the optical sensor directly opposite the window, and with each of the contact terminals electrically coupled to a respective one of the electrically conductive terminals. The transparent substrate has larger overall dimensions than the semiconductor substrate, so that one or more edges of the transparent substrate extend beyond the corresponding edges of the semiconductor substrate. A plurality of solder balls are positioned on the face of the transparent substrate, each in electrical contact with a respective one of the electrically conductive terminals. The solder balls and the semiconductor substrate are at least partially encapsulated in an encapsulating layer formed on the face of the transparent substrate, which has been planarized to expose upper portions of the solder balls, as contact pads of the optical sensor package.
Abstract:
A semiconductor package includes a substrate board and a semiconductor die attached to a top surface of that substrate board. A heat spreader is provided over the semiconductor die. A stiffening ring is positioned surrounding the semiconductor die, the stiffening ring being attached to the top surface of the substrate board and attached to a bottom surface of the plate portion of the heat spreader. Space is left on the board outside of the stiffening ring to support the installation of passive components to the substrate board. An external ring may be included, with that external ring being interconnected to the stiffening ring by a set of tie bars. Alternatively, the heat spreader includes an integrally formed peripheral sidewall portion.
Abstract:
On a circuit substrate on which an adhesive is used to couple electronic or structural components to the substrate, an adhesive dam is positioned to prevent the adhesive from interfering with the operation of the circuit. A contact pad can be provided at a selected location and with a selected shape, and solder deposited on the pad, then reflowed to form the dam. The dam can be a structure soldered to a contact pad, or the dam can be supported at its ends by another structure of the device, so that, at the location where it functions to contain the adhesive, it is not attached to the substrate.
Abstract:
A wafer-level camera sensor package includes a semiconductor substrate with an optical sensor on a front surface. Through-silicon-vias (TSV) extend through the substrate and provide I/O contact with the sensor from the back side of the substrate. A glass cover is positioned over the front surface, and the cover and substrate are embedded in a molding compound layer (MCL), the front surface of the MCL lying coplanar with the front of the cover, and the back surface lying coplanar with the back of the substrate. Surface-mount devices, electromagnetic shielding, and through-wafer-connectors can be embedded in the MCL. A redistribution layer on the back surface of the MCL includes bottom contact pads for mounting the package, and conductive traces interconnecting the contact pads, TSVs, surface-mount devices, shielding, and through-wafer-connectors. Anisotropic conductive adhesive is positioned on the front of the MCL for physically and electrically attaching a lens array.
Abstract:
A semiconductor package includes a substrate board and a semiconductor die attached to a top surface of that substrate board. A heat spreader is provided over the semiconductor die. A stiffening ring is positioned surrounding the semiconductor die, the stiffening ring being attached to the top surface of the substrate board and attached to a bottom surface of the plate portion of the heat spreader. Space is left on the board outside of the stiffening ring to support the installation of passive components to the substrate board. An external ring may be included, with that external ring being interconnected to the stiffening ring by a set of tie bars. Alternatively, the heat spreader includes an integrally formed peripheral sidewall portion.
Abstract:
A low profile chip scale module and method of making of the same. The low profile chip scale module includes embedded SMD and integrated EM shielding. An adhesive layer is arranged on a substrate, e.g., chip carrier. Dies and SMDs are arranged on the adhesive layer. An etched frame and molding is attached to the substrate. Inputs/outputs (I/O) are formed and the substrate is coated with a dielectric material. Metal lines and connections among bond pads are formed and another layer of dielectric material is applied as a protective layer. The substrate is cut into various predetermined sizes and a lens is attached to form the chip scale module.
Abstract:
A flip-chip fan-out wafer level package for package-on-package applications includes a semiconductor die with solder bumps on an upper surface in a flip chip configuration. The die is inverted, with an upper surface facing an upper side of a redistribution layer, with the solder bumps in electrical contact with respective chip contact pads of the redistribution layer. The redistribution layer includes conductive traces that place each of the solder bumps in electrical contact with one or both of one of a plurality of upper redistribution contact pads and one of a plurality of lower redistribution contact pads. Each of the plurality of upper redistribution contact pads has an upper solder ball in electrical contact therewith. The die and the upper solder balls are at least partially encapsulated in a layer of mold compound positioned on the upper surface of the redistribution layer, and whose lateral dimensions are defined by the lateral dimensions of the redistribution layer. The layer of mold compound has a back-ground surface at which a portion of each of the upper solder balls is exposed, for electrical contact with an upper package. Each of the lower redistribution contact pads has a lower solder ball a coupled thereto.