Abstract:
A semiconductor device according to an embodiment has: a semiconductor substrate; an acoustic resonator formed on the semiconductor substrate, having a semiconductor layer including impurity electrically isolated from the substrate by depletion layer and configured to resonate at a predetermined resonance frequency based on acoustic standing wave excited in the semiconductor layer; a temperature detector formed on the semiconductor substrate and configured to detect temperature of the semiconductor substrate; a calculating unit formed on the semiconductor substrate and configured to perform calculation of temperature compensation based on the temperature detected by the temperature detector, kind of the impurity and concentration of the impurity; and a controller formed on the semiconductor substrate and configured to control the resonance frequency based on a result of the calculation by the calculating unit.
Abstract:
An object is to provide a high frequency power amplifier in which lowering of output power during operation is prevented, influence of thermal noise is suppressed, high frequency operation is stable, and long-term reliability is ensured. The high frequency power amplifier includes a plurality of transistors having gate electrodes, source regions and drain regions, the gate electrodes, source regions and drain regions being respectively connected in common, and a plurality of acoustic reflection layers being buried in portions of the semiconductor substrate, the portions being located between adjacent transistors, the acoustic reflection layers being disposed in a direction which is oblique to a length direction of the gate electrode.
Abstract:
According to the first aspect of the present invention, a method for fabricating a semiconductor device with a silicon carbide (SiC) film is comprised of a process to grow a silicon carbide film on a substrate; and a process to form a groove in the periphery of a region on the silicon carbide film in which crystal defects are aggregated.According to the second aspect of the present invention, a method for fabricating a semiconductor device with a silicon carbide (SiC) film is comprised of a process to grow a silicon carbide film on a substrate; and a process to form a groove on said silicon carbide film so that a region in which crystal defects are aggregated in said silicon carbide film is removed.
Abstract:
A semiconductor package according to embodiments includes: a semiconductor chip including a front electrode on a front surface thereof and a back electrode on a back surface thereof; a front-side cap portion including an air gap in a portion between the semiconductor chip and the front-side cap portion and a front-side penetrating electrode, and is positioned to face the front surface of the semiconductor chip; a back-side cap portion bonded with a first cap portion to hermetically seal the semiconductor chip, includes an air gap at least in a portion between the semiconductor chip and the back-side cap portion and a back-side penetrating electrode, and is positioned to face the back surface of the semiconductor chip; a front-side connecting portion which electrically connects the front electrode and the front-side penetrating electrode; and a back-side connecting portion which electrically connects the back electrode and the back-side penetrating electrode.
Abstract:
A method of manufacturing a light emitting device. The method includes: mounting a light emitting chip on a substrate; forming a transparent resin portion and a phosphor layer by using a liquid droplet discharging apparatus, the transparent resin portion being formed in a shape of a dome and covering the light emitting chip to fill an exterior thereof on the substrate, a phosphor layer containing phosphor and being formed on an exterior of the transparent resin portion close to at least a top side thereof; and forming a reflecting layer at a position exterior of the transparent resin portion and the phosphor layer close to the substrate.
Abstract:
A power amplifier includes: a plurality of field effect transistors connected in parallel and each having a first and second ends, the first end being connected to ground; an amplifying unit which includes at least one of an inductor, a capacitor and a band pass filter and has a third and fourth ends, the third end being connected to the second ends of the field effect transistors, and the fourth end outputting an amplified output signal; and an amplitude controller which sends control signals respectively to gates of the field effect transistors to turn on or off the field effect transistors based on an address signal for performing selection on the field effect transistors and a clock signal. Channel widths of the field effect transistors are different from each other.
Abstract:
According to one embodiment, an acoustic semiconductor device includes an element unit, and a first terminal. The element unit includes an acoustic resonance unit. The acoustic resonance unit includes a semiconductor crystal. An acoustic standing wave is excitable in the acoustic resonance unit and is configured to be synchronously coupled with electric charge density within at least one portion of the semiconductor crystal via deformation-potential coupling effect. The first terminal is electrically connected to the element unit. At least one selected from outputting and inputting an electrical signal is implementable via the first terminal. The electrical signal is coupled with the electric charge density. The outputting the electrical signal is from the acoustic resonance unit, and the inputting the electrical signal is into the acoustic resonance unit.
Abstract:
One embodiment of a semiconductor device provided with a semiconductor substrate, a device region formed on the semiconductor substrate, a device isolation region, which encloses the device region, a plurality of first gate electrodes arranged so as to be parallel to each other on the device region and electrically connected to each other, and a plurality of second gate electrodes arranged so as to be parallel to a plurality of first gate electrodes on the device region and electrically connected to each other, wherein the first gate electrode is arranged so as to be interposed between the second gate electrodes, a gate width of the first gate electrode is smaller than the gate width of the second gate electrode, and a DC bias voltage higher than that of the second gate electrode is applied to the first gate electrode.
Abstract:
A semiconductor device includes a first transistor unit including first field effect transistors with first gate electrodes electrically connected together, first sources electrically connected together, and first drains electrically connected together, the first gate electrodes being electrically connected to the first drains, a second transistor unit including second field effect transistors with second gate electrodes electrically connected together, second sources electrically connected together, and second drains electrically connected together, the second gate electrodes being electrically connected to the first gate electrodes, and dummy gate electrodes electrically isolated from the first gate electrodes and the second gate electrodes. The first gate electrodes, the second gate electrodes, and the dummy gate electrodes are arranged parallel to one another, and at least one dummy gate electrode is located between any one of the first gate electrodes and any one of the second gate electrodes.