摘要:
The present invention provides a method for producing a film forming, fractionated novolak resin copolymer exhibiting fast photospeed and superior performance in a photoresist composition. A method is also provided for producing photoresist composition from such a fractionated novolak resin copolymer and for producing semiconductor devices using such a photoresist composition.
摘要:
A photosensitive positive working photosensitive composition suitable for use as a photoresist, which comprises an admixture of at least one water insoluble, aqueous alkali soluble, film forming novolak resin; at least one o-diazonaphthoquinone photosensitizer; and a photoresist solvent mixture comprising a propylene glycol alkyl ether acetate and 3-methyl-3-methoxy butanol and process for producing such a composition.
摘要:
A process for producing a water insoluble, aqueous alkali soluble, film forming novolak resin having low metal ions, made by the fractionation of a phenol formaldehyde condensation product, a process for producing a resin a photoresist composition of superior quality containing such novolak resin, and a method for producing a semiconductor device using such photoresist composition.
摘要:
A process for producing a water insoluble, aqueous alkali soluble, film forming novolak resin having low metal ions, made by the fractionation of a phenol formaldehyde condensation product, a process for producing a resin a photoresist composition of superior quality containing such novolak resin, and a method for producing a semiconductor device using such photoresist composition.
摘要:
A process for producing a water insoluble, aqueous alkali soluble, film forming novolak resin fraction having a low metal ion content, made by the fractionation of a phenol formaldehyde condensation product, a process for producing a photoresist compositions containing such a novolak resin, and a method for producing a semiconductor device using such a photoresist composition.
摘要:
The present invention relates to an antireflective coating composition comprising an admixture of:a) a polymer defined by the following structure: ##STR1## where, R.sub.1 & R.sub.2 are independently hydrogen, or C.sub.1 to C.sub.5 alkylR.sub.3 is a methyl, ethyl, propyl or butyl groupR.sub.4 -R.sub.7 are independently hydrogen, or C.sub.1 to C.sub.5 alkyln=10 to 50,000(b) a fluorine-containing, sparingly water-soluble (0.1%-10% by weight in water) organic C.sub.3 -C.sub.13 aliphatic carboxylic acid;(c) a non-metallic hydroxide; and(d) a solvent.The invention also relates to a method for producing such an antireflective coating composition and to a method for producing a microelectronic device using such an antireflective coating composition in conjunction with a photoresist composition.
摘要:
The present invention provides a method for producing a film forming, fractionated novolak resin, by:a) condensing formaldehyde with one or more phenolic compounds, and thereby producing a novolak resin;b) adding a photoresist solvent, and optionally a water-soluble organic polar solvent;c) feeding the mixture into a liquid/liquid centrifuge and feeding a C.sub.5 -C.sub.8 alkane, water or aromatic hydrocarbon solvent into the liquid/liquid centrifuge at a ratio of optional water-soluble organic polar solvent and photoresist solvent to C.sub.5 -C.sub.8 alkane, water or aromatic solvent, of from 5:1 to 0.5:1;d) rotating the liquid/liquid centrifuge containing the mixture at a speed of at least 500 rpm and thereby separating the mixture into two phases, collecting the two phases;e) optionally separating the lighter phase (L) into two second phases;f) removing residual C.sub.5 -C.sub.8 alkane, water or aromatic hydrocarbon solvent from the heavier phase (H) from step d) and leaving the novolak resin dissolved in the photoresist solvent;A method is also provided for producing photoresist composition from such a fractionated novolak resin and for producing microelectronic devices using such a photoresist composition.
摘要:
Disclosed is a method for producing low molecular weight oligomers of a film forming resin, which involves: a) providing a solution of the film forming resin in a first solvent system comprising a photoresist solvent, and optionally a water-soluble organic solvent; b) providing a second solvent system comprising at least one substantially pure C5-C8 alkane and/or at least one aromatic compound having at least one hydrocarbyl substituent and/or water/C1-C4 alcohol mixture; and performing steps c)-e) in the following order: c) mixing the solutions from a) and second solvent system from b) in a static mixer for a time period sufficient for efficient mixing; d) feeding the mixture from c) and second solvent system from b) through two separate inlet ports into a liquid/liquid centrifuge, one of the inlet ports feeding the mixture from c), the second inlet port feeding the second solvent system from b) into said liquid/liquid centrifuge at a feed ratio of the mixture from c) to the second solvent system from b) of from about 10/90 to about 90/10, at a temperature of from about 0° C. up to maximum temperature that is less than the boiling point of the lowest boiling solvent in the first or second solvent system; e) rotating the mixture from step d) inside the liquid/liquid centrifuge at a rotational speed sufficient to separate the mixture from step d) into two separate phases, and then collecting the two separate phases, each from two separate outlet ports, into two separate containers, wherein the heavier phase (H) comprises a fractionated film forming resin comprising higher molecular weight fractions of the film forming resin and the lighter phase (L) comprises low molecular weight oligomers of the film forming resin. The present invention also provides a method for producing a photoresist composition, and method for producing a microelectronic device using the aforementioned fractionated resin or low molecular weight oligomers of the film forming resin.
摘要:
The present invention provides a method for reducing the metal ion content of a film-forming resin, said method comprising the steps of: a) providing a solution of the film-forming resin in a water-immiscible solvent system comprising at least one water-immiscible solvent; b) providing a washing solution comprising water or a dilute solution of a water-soluble metal ion chelating agent; c) feeding the solutions from a) and b) through two separate inlet ports into a liquid/liquid centrifuge, one of said inlet ports feeding solution from a), the second inlet port feeding the solution from b) into said liquid/liquid centrifuge at a feed rate ratio of the solution from a) to that from b) from about 10/90 to about 90/10, at a temperature of from about 0° C. up to a maximum temperature that is less than the boiling point of the lowest boiling water-immiscible solvent in the water-immiscible solvent system; and d) rotating the mixture from step c) inside said liquid/liquid centrifuge at a rotational speed sufficient to separate the mixture from step c) into two separate phases, and then collecting the two separate phases, each through a separate outlet port, into two separate containers, wherein the heavier phase (H) comprises the film-forming resin having a reduced metal ion content in the water-immiscible solvent system, with a minor amount of water; and the lighter phase (L) comprises: 1) an aqueous solution of metal ions and a minor amount of a mixture of 2) the water-immiscible solvent system, and 3) the film-forming resin. The present invention also provides for a method for producing a photoresist composition and a method for producing a microelectronic device utilizing a film-forming resin produced by the aforementioned method.
摘要:
The present invention provides methods for solutions having a very low level of metal ions, utilizing a specially designed Ion Exchange Pack. A method is also provided for producing photoresist composition having a very low level of metal ions from novolak resins purified in a process using such an Ion Exchange Pack.