Abstract:
The present invention provides methods for producing top anti-reflective coating compositions having a very low level of metal ions, utilizing specially treated ion exchange resins. A method is also provided for producing semiconductor devices using such top anti-reflective coating compositions.
Abstract:
This invention relates to novel radiation sensitive compositions. More particularly the invention relates to photoresists containing phosphorus and nitrogen linked polymers; i.e., polyphosphazenes, useful in the preparation of a relief pattern on a substrate; e.g., a silicon wafer or aluminum plate. The polyphosphazenes of in this invention can be synthesized by the condensation of N-trimethylsilylalkoxyphosphorimides. Radiation sensitive positive photoresist compositions of the invention can be developed in aqueous base developer or organic solvent developer The base developer dissolution properties of the composition can be controlled by incorporating carboxylate groups into the polyphosphazene. The polyphosphazenes utilized in this invention have good solubility properties in various organic solvents and also have good mechanical, electrical, adhesion and thermal properties.
Abstract:
The present invention relates to semi-aqueous compositions and the method using same, to remove highly cross-linked resists and etch-residues. The compositions are comprised of aminobenzenesulfonic acid, water miscible organic solvent and water.
Abstract:
The present invention relates to semi-aqueous compositions and the method using same, to remove highly cross-linked resists and etch-residues. The compositions are comprised of aminobenzenesulfonic acid, water miscible organic solvent and water.
Abstract:
A composition for removing etching residue and a method using same are disclosed herein. In one aspect, there is provided a method for removing etching residue from a substrate comprising: contacting the substrate with a composition comprising water, an organic dicarboxylic acid, a buffering agent, a fluorine source, and optionally a water miscible organic solvent.
Abstract:
The present invention relates to a novel antireflective coating solution and a process for its use in photolithography. The antireflective coating solution comprises a novel polymer and an organic solvent or mixture of solvents, where the novel polymer comprises a unit containing a dye that absorbs from about 180 nm to about 450 nm and does not contain a crosslinking group.
Abstract:
The present invention relates to an antireflective coating composition comprising a novel polymer in a solvent composition. The invention further comprises processes for using the antireflective coating composition in photolithography. The antireflective coating composition comprises a novel polymer and a solvent composition, where the novel polymer of the antireflective coating comprises at least one unit containing a dye that absorbs from about 180 nm to about 450 nm and at least one unit that contains no aromatic funtionality. The solvent may be organic, preferrably, a solvent of low toxicity, or it may be water, which may additionally contain other water miscible organic solvents.
Abstract:
The present invention relates to a novel antireflective coating solution and a process for its use in photolithography. The antireflective coating solution comprises a novel polymer and an organic solvent or a mixture of organic solvents, where the novel polymer comprises a unit containing a dye that absorbs from about 180 nm to about 450 nm and a unit containing a crosslinking group.
Abstract:
The present invention relates to a novel antireflective coating solution and a process for its use in photolithography. The antireflective coating solution comprises a novel polymer and an organic solvent or a mixture of organic solvents, where the novel polymer comprises a unit containing a dye that absorbs from about 180 nm to about 450 nm and a unit containing a crosslinking group.
Abstract:
The present invention relates to a water insoluble, aqueous alkali soluble novolak resin blend, wherein the resin blend comprises two novolaks having dissimilar relative molecular weights and similar dissolution rates, a process for producing such a resin blend, a photoresist containing such a resin blend and a method for producing a semi-conductor device utilizing such a photoresist.