Abstract:
Some embodiments include a string of charge storage devices formed along a vertical channel of semiconductor material; a gate region of a drain select gate (SGD) transistor, the gate region at least partially surrounding the vertical channel; a dielectric barrier formed in the gate region; a first isolation layer formed above the gate region and the dielectric barrier; a drain region of the SGD transistor formed above the vertical channel; and a second isolation layer formed above the first isolation layer and the drain region, wherein the second isolation layer includes a conductive contact in electrical contact with the drain region of the SGD transistor. Additional apparatus and methods are disclosed.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
A method of mitigating asymmetric lens heating in photolithographically patterning a photo-imageable material using a reticle includes determining where first hot spot locations are expected to occur on a lens when using a reticle to pattern a photo-imageable material. The reticle is then fabricated to include non-printing features within a non-printing region of the reticle which generate additional hot spot locations on the lens when using the reticle to pattern the photo-imageable material. Other implementations are contemplated, including reticles which may be independent of method of use or fabrication.
Abstract:
Methods of forming features are disclosed. One method comprises forming a resist over a pool of acidic or basic material on a substrate structure, selectively exposing the resist to an energy source to form exposed resist portions and non-exposed resist portions, and diffusing acid or base of the acidic or basic material from the pool into proximal portions of the resist. Another method comprises forming a plurality of recesses in a substrate structure. The plurality of recesses are filled with a pool material comprising acid or base. A resist is formed over the pool material and the substrate structure and acid or base is diffused into adjacent portions of the resist. The resist is patterned to form openings in the resist. The openings comprise wider portions distal to the substrate structure and narrower portions proximal to the substrate structure. Additional methods and semiconductor device structures including the features are disclosed.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
Some embodiments include a string of charge storage devices formed along a vertical channel of semiconductor material; a gate region of a drain select gate (SGD) transistor, the gate region at least partially surrounding the vertical channel; a dielectric barrier formed in the gate region; a first isolation layer formed above the gate region and the dielectric barrier; a drain region of the SGD transistor formed above the vertical channel; and a second isolation layer formed above the first isolation layer and the drain region, wherein the second isolation layer includes a conductive contact in electrical contact with the drain region of the SGD transistor. Additional apparatus and methods are disclosed.
Abstract:
Some embodiments include methods of forming patterns. A semiconductor substrate is formed to comprise an electrically insulative material over a set of electrically conductive structures. An interconnect region is defined across the electrically conductive structures, and regions on opposing sides of the interconnect region are defined as secondary regions. A two-dimensional array of features is formed over the electrically insulative material. The two-dimensional array extends across the interconnect region and across the secondary regions. A pattern of the two-dimensional array is transferred through the electrically insulative material of the interconnect region to form contact openings that extend through the electrically insulative material and to the electrically conductive structures, and no portions of the two-dimensional array of the secondary regions is transferred into the electrically insulative material.
Abstract:
An imaging device comprising a first region and a second region. Imaging features in the first region and assist features in the second region are substantially the same size as one another and are formed substantially on pitch. Methods of forming an imaging device and methods of forming a semiconductor device structure are also disclosed.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.
Abstract:
A method of forming a semiconductor structure comprises forming pools of acidic or basic material in a substrate structure. A resist is formed over the pools of acidic or basic material and the substrate structure. The acidic or basic material is diffused from the pools into portions of the resist proximal to the pools more than into portions of the resist distal to the pools. Then, the resist is exposed to a developer to remove a greater amount of the resist portions proximal to the pools compared to the resist portions distal to the pools to form openings in the resist. The openings have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure. The method may further comprise forming features in the openings of the resist. The features have wider portions proximal to the substrate structure and narrower portions distal to the substrate structure.