Abstract:
A method for manufacturing a light emitting device includes providing an intermediate member including: at least one light emitting element that includes a plurality of electrodes arranged at a same surface side thereof, and a covering member covering the at least on light emitting element such that at least a portion of a surface of each of the plurality of electrodes is exposed; forming a metal layer that continuously covers the exposed portion of each of the electrodes and the covering member; and removing a portion of the metal layer by irradiating the metal layer with laser light to form a plurality of external connection electrodes that are spaced apart from each other, each of the plurality of external connection electrodes having an area larger than an area of respective one of the plurality of electrodes.
Abstract:
Disclosed is a vertical nitride semiconductor device including a conductive substrate; a semiconductor layer bonded to the conductive substrate via a second electrode; a metal layer formed on the conductive substrate; a first electrode formed on the semiconductor layer; and a bonding layer formed between the conductive substrate and the second electrode. The conductive substrate has a flange part, which extends from a side surface of the conductive substrate, on a side of the other front surface thereof. The flange part is formed in a manner in which the conductive substrate and the semiconductor layer are bonded together and then a remaining part of the conductive substrate is divided, the remaining part being formed by cutting off the semiconductor layer and part of the conductive substrate in a thickness direction so as to expose a side surface of the semiconductor layer and the side surface of the conductive substrate.
Abstract:
A light-emitting module includes an optical member including a first major surface, and a second major surface; a light-emitting device bonded to the first major surface, the light-emitting device including a light-emitting element including a major light-emitting surface, an electrode surface, and an electrode disposed at the electrode surface, a resin member covering a side surface of the light-emitting element, and a conductive layer disposed continuously on the electrode and on the resin member; an insulating member covering the first major surface of the optical member, a side surface of the light-emitting device, and a portion of the conductive layer of the light-emitting device; and a wiring member disposed on the insulating member and electrically connected to the conductive layer.
Abstract:
A method for manufacturing a light-emitting device includes preparing an intermediate product; the product includes a light-emitting element provided with paired electrodes at a first surface and a first covering member covering the light-emitting element such that portions of surfaces of the paired electrodes are exposed. A metal paste layer is formed, continuously covering the exposed portion of the paired electrodes and the first covering member. Paired wirings are formed for preventing the paired electrodes from being short-circuited. The metal paste layer on the paired electrodes and the metal paste layer on the first covering member are irradiated with laser light to remove the metal paste layer between the paired electrodes and a portion of the metal paste layer on the first covering member.
Abstract:
A metal coating method includes forming a metal layer on a substrate including a first member and a second member, the second member having a lower thermal conductivity than a thermal conductivity of the first member, and irradiating the metal layer formed on the first member and the second member with a laser beam such that, after irradiation, the metal layer formed on the first member remains, and the metal layer formed on the second member is removed.
Abstract:
A light-emitting device comprising a package comprising a light-emitting element comprising a first surface and a second surface opposite to the first surface, a first light-transmissive member arranged on the second surface of the light-emitting element, paired electrodes at the first surface of the light-emitting element, and a first covering member covering the light-emitting element such that the paired electrodes are exposed from the first covering member. The light-emitting device further comprises a light-guiding plate on which the package is placed, and a second covering member arranged on the light-guiding plate and covering laterally the package. The light-emitting device further comprises paired wirings continuously covering the paired electrodes exposed and the first covering members and being connected to the paired electrodes respectively. The paired wirings are formed by irradiation of laser light on a metal paste layer continuously covering the paired electrodes and the first covering member to remove the metal paste layer between the paired electrodes, the metal paste layer comprising a mixture of a resin and metal powder.
Abstract:
A light emitting device includes: a first light emitting element that comprises a pair of first electrodes; a second light emitting element that comprises a pair of second electrodes; a covering member that integrally covers the first and second light emitting elements such that lower surfaces of the pair of first electrodes and lower surfaces of the pair of second electrodes are exposed from a lower surface of the covering member; a pair of first external connection electrodes, each comprising: a first portion that covers the lower surface of a respective first electrode, and a second portion that covers a portion of the lower surface of the covering member; and a pair of second external connection electrodes, each comprising: a first portion that covers the lower surface of a respective second electrode, and a second portion that covers a portion of the lower surface of the covering member.
Abstract:
A method for manufacturing a light emitting device includes providing an intermediate member including: at least one light emitting element that includes a plurality of electrodes arranged at a same surface side thereof, and a covering member covering the at least on light emitting element such that at least a portion of a surface of each of the plurality of electrodes is exposed; forming a metal layer that continuously covers the exposed portion of each of the electrodes and the covering member; and removing a portion of the metal layer by irradiating the metal layer with laser light to form a plurality of external connection electrodes that are spaced apart from each other, each of the plurality of external connection electrodes having an area larger than an area of respective one of the plurality of electrodes.
Abstract:
A light-emitting device includes: a light-emitting element; a coating member that covers the light-emitting element; and two external connection electrodes exposed form a first surface of the coating member. Each of the external connection electrodes includes an electrode buried in the coating member; and a metal layer formed on the electrode. A surface of each of the metal layers is exposed from the first surface of the coating member. The first surface of the coating member includes a plurality of grooves between the external connection electrodes.
Abstract:
A light-emitting module includes a first terminal, a second terminal, a first light source, a second light source, and a third light source. The first light source is connected between the first terminal and the second terminal. The second light source and the third light source are connected between the first terminal and the second terminal, in anti-parallel with the first light source. The first, second, and third light sources are aligned in a first direction along a light-emitting surface, with the first light source between the second light source and the third light source.