摘要:
An electronic assembly may include a packaging substrate, an integrated circuit (IC) semiconductor chip, a plurality of metal interconnection structures, and a thermoelectric heat pump. The integrated circuit (IC) semiconductor chip may have an active side including input/output pads thereon and a back side opposite the active side, and the IC semiconductor chip may be arranged with the active side facing the first surface of the packaging substrate. The plurality of metal interconnection structures may be between the active side of the IC semiconductor chip and the first surface of the packaging substrate, and the plurality of metal interconnection structures may provide mechanical connection between the active side of the IC semiconductor chip and the first surface of the packaging substrate. The thermoelectric heat pump may be coupled to the packaging substrate with the thermoelectric heat pump being configured to actively pump heat between the IC semiconductor chip and the packaging substrate. Related methods and structures are also discussed.
摘要:
An electronic assembly may include a packaging substrate, an integrated circuit (IC) semiconductor chip, a plurality of metal interconnection structures, and a thermoelectric heat pump. The integrated circuit (IC) semiconductor chip may have an active side including input/output pads thereon and a back side opposite the active side, and the IC semiconductor chip may be arranged with the active side facing the first surface of the packaging substrate. The plurality of metal interconnection structures may be between the active side of the IC semiconductor chip and the first surface of the packaging substrate, and the plurality of metal interconnection structures may provide mechanical connection between the active side of the IC semiconductor chip and the first surface of the packaging substrate. The thermoelectric heat pump may be coupled to the packaging substrate with the thermoelectric heat pump being configured to actively pump heat between the IC semiconductor chip and the packaging substrate. Related methods and structures are also discussed.
摘要:
A thermoelectric structure may include first and second thermally conductive layers. The first and second thermally conductive layers may be laterally spaced apart in a direction parallel with respect to surfaces of the first and second thermally conductive layers so that a gap is defined between edges of the first and second thermally conductive layers. A thermoelectric element may bridge the gap between the first and second thermally conductive layers, and the thermoelectric element may include a thermoelectric material on respective surface portions of the first and second thermally conductive layers.
摘要:
A method of forming a thermoelectric device may include providing a substrate having a surface, and thermally coupling a thermoelectric p-n couple to a first portion of the surface of a substrate. Moreover, the thermoelectric p-n couple may include a p-type thermoelectric element and an n-type thermoelectric element. In addition, a thermally conductive field layer may be formed on a second portion of the surface of the substrate adjacent the first portion of the surface of the substrate. Related structures are also discussed.
摘要:
A method of forming a thermoelectric device may include forming a pattern of conductive traces, and forming an electrically insulating matrix between the conductive traces of the pattern of conductive traces. In addition, a plurality of thermoelectric elements may be electrically and mechanically coupled to the pattern of conductive traces so that each conductive trace of the pattern of conductive traces has one of the plurality of thermoelectric elements thereon. In addition, the plurality of thermoelectric elements may be free of the electrically insulating matrix. Related methods and structures are also discussed.
摘要:
A method of forming a thermoelectric device may include forming a plurality of islands of thermoelectric material on a deposition substrate. The plurality of islands of thermoelectric material may be bonded to a header substrate so that the plurality of islands are between the deposition substrate and the header substrate. More particularly, the islands of thermoelectric material may be epitaxial islands of thermoelectric material having crystal structures aligned with a crystal structure of the deposition substrate. Related structures are also discussed.
摘要:
A thermoelectric device having at least one thermoelectric unit including at least one thermoelectric pair of n-type and p-type thermoelements, a first header coupled to one side of the thermoelectric pair, and a second header coupled to a second side of the thermoelectric pair. The thermoelectric pair has a thermal conduction channel area smaller than an area of the first header or the second header such that the thermal conduction area is a fraction of the area of the first header or the second header.
摘要:
A structure, system and method for controlling a temperature of a heat generating device in a solid medium, wherein heat is extracted from the medium into at least one heat extraction device, the heat extraction device dissipates heat into an environment apart from the medium by a heat sink thermally coupled to the heat extraction device; and heat from the medium is dissipated into the heat sink by a first thermal interface material thermally coupling the heat sink to the medium.
摘要:
A structure, system and method for controlling a temperature of a heat generating device in a solid medium, wherein heat is extracted from the medium into at least one heat extraction device, the heat extraction device dissipates heat into an environment apart from the medium by a heat sink thermally coupled to the heat extraction device; and heat from the medium is dissipated into the heat sink by a first thermal interface material thermally coupling the heat sink to the medium.
摘要:
A thermoelectric device having at least one unipolar couple element (22) including two legs (22a) of a same electrical conductivity type. A first-temperature stage (24) is connected to one of the two legs. A second-temperature stage (28) is connected across the legs of the at least one unipolar couple element. A third-temperature stage (30) is connected to the other of the two legs. Methods for cooling an object and for thermoelectric power conversion utilize the at least one unipolar couple element to respectively cool an object and produce electrical power.