Abstract:
An apparatus includes a first input/output (I/O) interface circuit having a maximum voltage rating. The first I/O interface circuit includes a level shifter and an output stage. A reference voltage bias generator is coupled to the first I/O interface circuit, to a first supply voltage, and to a first ground potential. The reference voltage bias generator is configured to generate a plurality of reference bias signals, including a first reference voltage and a second reference voltage. When the first supply voltage is not greater than the maximum voltage rating, the first reference voltage is equal to the first supply voltage and the second reference voltage is equal to the first ground potential. When the first supply voltage is greater than the maximum voltage rating, the first reference voltage is equal to the first supply voltage times a first fraction, and the second reference voltage is equal to the first supply voltage times a second fraction.
Abstract:
A buffer includes an input configured to receive a first digital signal having first and second logic states referenced, respectively, to a first high voltage and a first low voltage of a first supply domain. A first inverter circuit includes a pMOS transistor and nMOS transistor having gate terminals connected to the input. A second inverter is connected in series with the output of the first inverter. The second inverter has an output configured to generate a second digital signal having first and second logic states referenced, respectively, to a second high voltage and a second low voltage of a second, different, supply domain, wherein at least the second high voltage is greater than the first high voltage. A feedback circuit is configured to apply the second digital signal as a bias to a transistor body of the p-MOS transistor of the first inverter circuit.
Abstract:
The Schmitt trigger circuit includes a signal input, a first inverter coupled to the signal input and configured to operate at a first voltage, and a second inverter coupled downstream of the first inverter and configured to operate at a second voltage lower than the first voltage. A protection device is coupled between the first inverter and the second inverter, and configured to limit a voltage input to the second inverter at the second voltage. A feedback circuit is coupled downstream of the protection device between the first inverter and the second inverter and configured to introduce hysteresis. An output circuit is coupled to the second inverter and configured to provide an output signal at the second voltage. The approach provides an architecture for 3.3V receivers designed by using 1.8V devices, without active power consumption from the I/O PAD during transition, and/or that supports CMOS standard levels for 1.8V and 3.3V receivers.
Abstract translation:施密特触发电路包括信号输入端,耦合到信号输入并被配置为以第一电压工作的第一反相器,以及耦合在第一反相器下游的第二反相器,并被配置为在低于第一电压的第二电压下工作。 保护装置耦合在第一反相器和第二反相器之间,并且被配置为将第二反相器的电压输入限制在第二电压。 反馈电路被耦合在第一逆变器和第二逆变器之间的保护装置的下游,并被配置为引入滞后。 输出电路耦合到第二反相器并且被配置为提供处于第二电压的输出信号。 该方法为通过使用1.8V器件设计的3.3V接收器提供了架构,在转换期间没有来自I / O PAD的有功功耗,和/或支持1.8V和3.3V接收器的CMOS标准电平。
Abstract:
An integrated circuit includes an input pad and a Schmitt trigger coupled to the input pad. The Schmitt trigger includes a first inverter and a second inverter. The Schmitt trigger includes a pull-up transistor coupled to an input of the second inverter and configure to supply a high reference voltage to the input of the second inverter.
Abstract:
A glitch filter is provided. The glitch filter receives an input signal and sets a voltage level of an intermediary input node in accordance with a state of the input signal. The glitch filter charges or discharges a switched capacitance based on the voltage level of the intermediary input node and charges or discharges a filter capacitance based on a charge of the switched capacitance. The glitch filter sets a state of an output signal based on the charge of the filter capacitance. The glitch filter includes a reset stage that at least partially filters a burst of glitches in the input signal from the output signal by controlling the charge of the switched capacitance based on the state of the input signal and the state of the output signal.
Abstract:
A drive circuit includes a first drive transistor coupled between a first supply node and an output pad of an integrated circuit and a second drive transistor coupled between a second supply node and the output pad. The first drive transistor and second drive transistors are controlled by a control signal. A body bias generator circuit is configured to apply a variable first body bias to the first transistor and a variable second body bias to the second transistor. The variable first and second body biases are generated as a function of the control signal and a voltage at the output pad.
Abstract:
An apparatus includes a first input/output (I/O) interface circuit having a maximum voltage rating. The first I/O interface circuit includes a level shifter and an output stage. A reference voltage bias generator is coupled to the first I/O interface circuit, to a first supply voltage, and to a first ground potential. The reference voltage bias generator is configured to generate a plurality of reference bias signals, including a first reference voltage and a second reference voltage. When the first supply voltage is not greater than the maximum voltage rating, the first reference voltage is equal to the first supply voltage and the second reference voltage is equal to the first ground potential. When the first supply voltage is greater than the maximum voltage rating, the first reference voltage is equal to the first supply voltage times a first fraction, and the second reference voltage is equal to the first supply voltage times a second fraction.
Abstract:
A buffer includes an input configured to receive a first digital signal having first and second logic states referenced, respectively, to a first high voltage and a first low voltage of a first supply domain. A first inverter circuit includes a pMOS transistor and nMOS transistor having gate terminals connected to the input. A second inverter is connected in series with the output of the first inverter. The second inverter has an output configured to generate a second digital signal having first and second logic states referenced, respectively, to a second high voltage and a second low voltage of a second, different, supply domain, wherein at least the second high voltage is greater than the first high voltage. A feedback circuit is configured to apply the second digital signal as a bias to a transistor body of the p-MOS transistor of the first inverter circuit.
Abstract:
A circuit having a centralized PT compensation circuit to provide compensation signals to localized I/O blocks on the chip. Process variations and temperature variations tend to be approximately uniform across an integrated circuit chip. Thus, a single, centralized PT compensation circuit may be used instead of one PT compensation circuit per I/O section as with solutions of the past. Further, the PT compensation circuit may generate a digital code indicative of the effects of process and temperature. Further yet, each section of I/O block may have a local voltage compensation circuit to compensate the voltage variation of the I/O block. The voltage compensation circuit utilizes an independent reference voltage. The reference voltage is generated by the PT compensation circuit, which is placed centrally in the IC chip and hence any need to repeat the reference generation for each I/O block is eliminated.
Abstract:
A hybrid driver receives complementary high-speed input data signals and a pair of low-speed input data signals and selects one of the pairs of input data signals and drives output data signals on first and second output nodes based on the selected pair of input data signals. The hybrid driver includes first and second driver circuits coupled to the first and second output nodes, respectively. Each driver circuit includes first and second series-connected transistors coupled between a first supply voltage node and a reference voltage node, with an interconnection of the first and second series-connected transistors coupled to the corresponding first or second output node. Each first and second driver circuit includes a third transistor coupled in parallel with the corresponding first transistor. Each first and third transistor couples in parallel the corresponding output node to a second supply voltage node responsive to the corresponding low-speed input data signal.