Abstract:
A device includes a first switch, a first irreversibly programmable memory point, and a second irreversibly programmable memory point coupled in parallel with the first irreversibly programmable memory point. The first switch and the parallel combination of the first and second irreversibly programmable memory points are coupled in series between a first node and a second node.
Abstract:
A device includes a first switch, a first irreversibly programmable memory point, and a second irreversibly programmable memory point coupled in parallel with the first irreversibly programmable memory point. The first switch and the parallel combination of the first and second irreversibly programmable memory points are coupled in series between a first node and a second node.
Abstract:
A device includes a first switch, a first irreversibly programmable memory point, and a second irreversibly programmable memory point coupled in parallel with the first irreversibly programmable memory point. The first switch and the parallel combination of the first and second irreversibly programmable memory points are coupled in series between a first node and a second node.
Abstract:
An integrated circuit includes a silicon on insulator substrate having a semiconductor film located above a buried insulating layer. At least one memory cell of the one-time-programmable type includes an MOS capacitor having a first electrode region including a gate region at least partially silicided and flanked by an insulating lateral region, a dielectric layer located between the gate region and the semiconductor film, and a second electrode region including a silicided zone of the semiconductor film, located alongside the insulating lateral region and extending at least partially under the dielectric layer.
Abstract:
A method for controlling the breakdown of an antifuse memory cell formed on a semiconductor substrate, including the steps of: applying a programming voltage; detecting a breakdown time; and interrupting the application of the programming voltage at a time following the breakdown time by a post-breakdown time.
Abstract:
A device includes a number of irreversibly programmable memory points. Each irreversibly programmable memory point includes a first semiconductor zone and a gate located on the first zone. A conductive area defines the gates of the memory points. First and second semiconductor areas are respectively located on either side of a vertical alignment with the conductive area. The first zones are alternately in contact with the first and second areas.
Abstract:
A method for controlling the breakdown of an antifuse memory cell formed on a semiconductor substrate, including the steps of: applying a programming voltage; detecting a breakdown time; and interrupting the application of the programming voltage at a time following the breakdown time by a post-breakdown time.
Abstract:
A method of controlling an array of ReRAM cells including programmable-resistance storage elements, including: during a standby period, applying a non-zero standby voltage between electrodes of the storage elements of each cell of the array.
Abstract:
An integrated circuit includes a silicon-on-insulator substrate that includes a semiconductor film located above a buried insulating layer. A first electrode of a silicide material overlies the semiconductor film. A sidewall insulating material is disposed along sidewalls of the first electrode. A dielectric layer is located between the first electrode and the semiconductor film. A second electrode includes a silicided zone of the semiconductor film, which is located alongside the sidewall insulating material and extends at least partially under the dielectric layer and the first electrode. The first electrode, the dielectric layer and the second electrode form a capacitor that is part of a circuit of the integrated circuit.
Abstract:
A method for controlling the breakdown of an antifuse memory cell formed on a semiconductor substrate, including the steps of: applying a programming voltage; detecting a breakdown time; and interrupting the application of the programming voltage at a time following the breakdown time by a post-breakdown time.