Abstract:
Provided is a capacitor, a semiconductor device including the same, and an electronic apparatus including the semiconductor device, wherein the capacitor includes a first electrode including a first metal ion, a second electrode arranged spaced apart from the first electrode, a dielectric layer provided between the first electrode and the second electrode, and an interfacial layer provided between the first electrode and the dielectric layer and including a compound represented by MxOyNz, in which a diffusion energy barrier value of M is equal to or greater than a diffusion energy barrier value of the first metal ion.
Abstract:
A ternary paraelectric having a Cc structure and a method of manufacturing the same are provided. The ternary paraelectric having a Cc structure includes a material having a chemical formula of A2B4O11 that has a monoclinic system, is a space group No. 9, and has a dielectric constant of 150 to 250, wherein “A” is a Group 1 element, and “B” is a Group 5 element. “A” may include one of Na, K, Li and Rb. “B” may include one of Nb, V, and Ta. The A2B4O11 material may be Na2Nb4O11 in which bandgap energy thereof is greater than that of STO. The A2B4O11 material may have relative density that is greater than 90% or more.
Abstract:
Provided are a dielectric, a capacitor and a semiconductor device that include the dielectric, and a method of preparing the dielectric, the dielectric including: a composition represented by Formula 1; and an oxide including a perovskite type crystal structure having a polar space group or a non-polar space group other than a Pbnm space group: AxByO3-δ wherein, in Formula 1, A is a monovalent, divalent, or trivalent cation, B is a trivalent, tetravalent, or pentavalent cation, and 0.5≤x≤1.5, 0.5≤y≤1.5, and 0≤δ≤0.5.
Abstract:
A capacitor including a lower electrode; an upper electrode apart from the lower electrode; and a between the lower electrode and the upper electrode, the dielectric including a dielectric layer including TiO2, and a leakage current reducing layer including GeO2 in the dielectric layer. Due to the leakage current reducing layer, a leakage current is effectively reduced while a decrease in the dielectric constant of the dielectric thin-film is small.
Abstract:
An electrode assembly includes an electrode stack structure including a first electrode assembly sheet having flexibility and a second electrode assembly sheet having flexibility, where and the first and second electrode assemblies are alternately disposed one on another, and a binding unit which binds a portion of the electrode stack structure. The first electrode assembly sheet includes first and second separator films disposed to face each other, a first electrode sheet which is disposed between the first and second separator films and includes a first electrode collector and a first active material layer, and a first confining unit which restricts a movement of the first electrode sheet with respect to the first and second separator films.
Abstract:
A complex electrode assembly includes a first sheet-type wiring which extends in a lengthwise direction of the first sheet-type wiring and comprises a sheet region of which a width that is perpendicular to the lengthwise direction is greater than a thickness that is perpendicular to the lengthwise direction and a width direction of the first sheet-type wiring, and electrode assemblies which are arranged separate from each other in the lengthwise direction of the first sheet-type wiring and are electrically connected to the first sheet-type wiring. The first sheet-type wiring may be disposed to face an outer surface of each of the electrode assemblies.
Abstract:
A capacitor including a lower electrode; an upper electrode apart from the lower electrode; and a between the lower electrode and the upper electrode, the dielectric including a dielectric layer including TiO2, and a leakage current reducing layer including GeO2 in the dielectric layer. Due to the leakage current reducing layer, a leakage current is effectively reduced while a decrease in the dielectric constant of the dielectric thin-film is small.
Abstract:
Provided are a capacitor and a method for manufacturing the capacitor, the capacitor including: a first thin-film electrode layer; a second thin-film electrode layer; a dielectric layer, including a binary metal oxide, between the first thin-film electrode layer and the second thin-film electrode layer; and an interlayer, including an anionized layer, between the dielectric layer and at least one of the first thin-film electrode layer or the second thin-film electrode layer. The interlayer has a same type of crystal structure as and a different composition from the dielectric layer, and the anionized layer includes at least one of a monovalent cation, a divalent cation, or a trivalent cation.
Abstract:
Provided are a dielectric thin film, an integrated device including the same, and a method of manufacturing the dielectric thin film. The dielectric thin film includes an oxide having a perovskite-type crystal structure represented by Formula 1 below and wherein the dielectric thin film comprises 0.3 at % or less of halogen ions or sulfur ions. A2-xB3-yO10-z In Formula 1, A, B, x, y, and z are disclosed in the specification.
Abstract:
Provided is a method of preparing a dielectric film having a nanoscale three-dimensional shape and including an oxide, the oxide represented by RAMBOC where R is a divalent element and M is a pentavalent element, the method may include synthesizing a target material, the target material including the divalent element and the pentavalent element; and forming the oxide by depositing the divalent element and the pentavalent element, from the target material, onto a substrate such that the oxide includes a perovskite-type crystal structure, 1.3