摘要:
The invention concerns a catalyst for conversion of hydrocarbon feeds. The catalyst is essentially constituted by 0.05% to 10% by weight of a precious metal and a silica (5-70%)/alumina support with a specific surface area of 100-500m.sup.2 /g. The catalyst has an average pore diameter of 1-12 nm, the pore volume of pores with diameters between the average diameter.+-.3 nm being more than 40% of the total pore volume. The dispersion of the precious metal is 20-100% and the distribution coefficient for the precious metal is greater than 0.1.The invention also concerns a process for the hydroisomerization of feeds with boiling points of more than 350.degree. C. using this catalyst. The process is operated between 200.degree. C. and 450.degree. C. at 2-25 MPa with a VVH of 0.1-10 h.sup.-1 and a hydrogen/feed volume ratio of 100-2000.
摘要:
The invention concerns a process for the hydroisomerisation treatment for feeds from the Fischer-Tropsch process. The catalyst is essentially constituted by 0.05% to 10% by weight of a precious metal and a silica (5-70%)/alumina support with a specific surface area of 100-500 m.sup.2 /g. The catalyst has an average pore diameter of 1-12 nm, the pore volume of pores with diameters between the average diameter .+-.3 nm being more than 40% of the total pore volume. The dispersion of the precious metal is 20-100% and the distribution coefficient for the precious metal is greater than 0.1. The process is operated at 200.degree.-450.degree. C. at a partial pressure of hydrogen of 2 to 25 MPa with a VVH of 0.1-10 h.sup.-1 and a hydrogen/feed volume ratio of 100-2000.
摘要:
For Hydroisomerizering charges emanating from the Fischer-Tropsch process:a) hydrogen is reacted with the charge in contact with a catalyst 1 in a first reaction zone, the catalyst 1 comprising at least one alumina-based matrix and at least one hydro-dehydrogenation component andb) the effluent from the first reaction zone is put into contact with a catalyst 2 in a second reaction zone, the catalyst 2 comprising:20 to 97% by weight of at least one matrix,3 to 80% by weight of at least one Y zeolite in hydrogen form, the zeolite being characterized by an SiO.sub.2 /Al.sub.2 O.sub.3 molar ratio of over 4.5; a sodium content of less than 1% by weight determined at 1100.degree. C. under calcining conditions; an a.sub.o crystal parameter of the elemental mesh of less than 24.70.times.10.sup.-10 m; and a specific surface area determined by the BET method of over 400 m.sup.2.g.sup.-1, andat least one hydro-dehydrogenation component.
摘要翻译:对于从费 - 托方法产生的加氢异构化电荷:a)氢与在第一反应区中与催化剂1接触的电荷反应,催化剂1包含至少一种基于氧化铝的基体和至少一个氢脱氢组分 和b)来自第一反应区的流出物与第二反应区中的催化剂2接触,催化剂2包含:至少一种基质20至97重量%,至少3至80重量% 一种Y型沸石为氢形式,沸石的特征在于SiO 2 / Al 2 O 3摩尔比超过4.5; 在1100℃下在煅烧条件下测定的钠含量小于1重量% 元素网的ao晶体参数小于24.70×10-10 m; 并且通过BET法测定的比表面积超过400m 2·g -1,和至少一种加氢脱氢组分。
摘要:
A method of hydrocracking charges emanating from the Fischer-Tropsch process, in which:(a) hydrogen is reacted with the charge in contact with a catalyst 1 in a first reaction zone, the said catalyst 1 comprising at least one alumina-based matrix and at least one hydro-dehydrogenation component;(b) the effluent from the first reaction zone is put into contact with a catalyst 2 in a second reaction zone, the said catalyst 2 comprising:20 to 97% by weight of at least one matrix;3 to 80% by weight of at least one Y zeolite in hydrogen form,the said zeolite being characterized by an SiO.sub.2 /Al.sub.2 O.sub.3 molar ratio of over 4.5:1, a sodium content of less than 1% by weight determined on a zeolite calcined at 1100.degree. C.; an a.sub.o crystal parameter of the elemental mesh of less than 24.70.times.10.sup.-10 m; and a specific surface area determined by the BET method of over 400 m.sup.2.g.sup.-1 ;and at least one hydro-dehydrogenation component.
摘要翻译:一种从费 - 托法生产的加氢裂化装料的方法,其中:(a)在第一反应区中使氢气与与催化剂1接触的电荷反应,所述催化剂1包含至少一种基于氧化铝的基体和 至少一种氢脱氢组分; (b)来自第一反应区的流出物与第二反应区中的催化剂2接触,所述催化剂2包含:至少一种基质的20至97重量%; 3至80重量%的至少一种氢形式的Y沸石,所述沸石的特征在于SiO 2 / Al 2 O 3摩尔比超过4.5:1,钠含量小于1重量%,在沸石上煅烧 1100℃。 元素网的ao晶体参数小于24.70x10-10 m; 并且通过BET法测定的比表面积超过400m 2·g -1; 和至少一种氢脱氢组分。
摘要:
A process for transforming a gas oil cut from a conversion process or from an aromatic crude is described, the aim of the process being to improve the cetane number of said cut. The process comprises at least one hydrogenation step in which said gas oil cut is passed, in the presence of hydrogen, over a catalyst comprising an amorphous mineral support, at least one compound of a group VIB metal, at least one compound of a non noble group VIII metal and at least phosphorous or a compound of phosphorous, the process then comprising a hydrocracking step in which the hydrogenated feed is passed, in the presence of hydrogen, over a catalyst comprising an acidic support, at least one compound of a group VIB metal and at least one compound of a non noble group VIII metal.
摘要:
The invention concerns a process and plant for purifying spent oil, comprising dehydration, preferably by atmospheric distillation, directly followed by vacuum distillation producing a residue and at least one distilled oil fraction. The vacuum residue directly undergoes solvent extraction and the clarified oil obtained and the distilled oil fraction(s) undergo finishing hydrotreatment.
摘要:
A process for the joint production of middle distillates and oil bases (viscosity index between 95 and 150) particularly from vacuum distillates and/or deasphalted oils, comprises a first step in which the feedstock is brought into contact with an amorphous catalyst containing at least one metal or metallic compound with a hydro-dehydrogenating function, such as Ni, Mo, W or Co, at a temperature of between 350.degree. C. and 430.degree. C., a pressure of between 5 and 20 MPa, a space velocity of between 0.1 and 5 h.sup.-1 in the presence of hydrogen in a ratio H.sub.2 /HC of 150 to 2,000 by volume. The product from the first step is brought into contact in a second step with a second catalyst comprising a support, a Y zeolite, at least one group VIB element and at least one group VIII metal at a temperature of between 350.degree. C. and 430.degree. C., a pressure of between 5 and 20 MPa and a space velocity of between 0.1 and 5 h.sup.-1.
摘要:
The invention concerns a plant for purifying spent oil, including apparatus for dehydration, preferably by atmospheric distillation, directly followed by vacuum distillation producing a residue and at least one distilled oil fraction. The vacuum residue directly undergoes solvent extraction and the clarified oil obtained and the distilled oil fraction(s) undergo finishing hydrotreatment.
摘要:
The invention concerns a process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which process the feed to be treated is brought into contact with a catalyst comprising an EU-1 zeolite and at least one hydro-dehydrogenating element, at a temperature which is in the range 170° C. to 500° C., a pressure in the range 1 to 250 bar and an hourly space velocity in the range 0.05 to 100 h−1, in the presence of hydrogen in a proportion of 50 to 2000 l/l of feed. The oils obtained have good pour points and high viscosity indices (VI). The process is also applicable to gas oils and other feeds requiring a reduction of pour point. The invention also concerns an EU-1 zeolite from which a portion of elements T (Al, Ga, Fe or B) have been removed and which has an Si/T atomic ratio of at least 10.
摘要:
Process for converting a hydrocarbon fraction that is obtained from atmospheric distillation of a crude, comprising a vacuum distillation stage (a) of said feedstock that makes it possible to obtain a vacuum distillate and a vacuum residue; a stage b) for treating at least a portion of the vacuum distillate in the presence of hydrogen; a stage c) for treating at least a portion of the vacuum residue in the presence of hydrogen, whereby said stages b) and c) are each carried out in at least one separate triphase reactor that contains at least one ebullated-bed hydrotreatment catalyst that operates with an upward flow of liquid and gas; a stage d) in which at least a portion of the product that is obtained in stage b) is sent to an atmospheric distillation zone from which a light fraction and a heavier liquid fraction are recovered; a stage e) in which at least a portion of the product that is obtained in stage c) is sent to an atmospheric distillation zone from which a light fraction and a heavier liquid fraction are recovered; and optionally a catalytic cracking stage f) in which at least a portion of the heavier liquid fractions that are obtained in stages d) and e) are at least partially cracked into lighter fuel-type fractions.