Abstract:
A wiring board or an electronic component embedded substrate includes a substrate that includes a resin containing a plurality of fillers; and a via that is electrically connected to at least one interconnect provided to the substrate, wherein the via includes a mix area in which metal is provided between the fillers on an inner radial side with respect to the substrate. A method of manufacturing a wiring board or an electronic component embedded substrate includes preparing a substrate that includes a resin containing a plurality of fillers; forming a via formation hole in the substrate; performing an ashing process on at least an inner wall of the via formation hole; and performing electroless plating on the inner wall of the via formation hole.
Abstract:
A method of forming a metal magnetic film includes forming the metal magnetic film by a plating process, wherein the metal magnetic film comprises a permalloy and carbon atoms and a content of the carbon atoms is 0.3 to 3.0 at % based on a total amount of the carbon atoms and metal elements.
Abstract:
Disclosed herein is a composite magnetic sealing material includes a resin material and a filler blended in the resin material in a blend ratio of 50 vol. % or more and 85 vol. % or less. The filler includes a first magnetic filler containing Fe and 32 wt. % or more and 39 wt. % or less of a metal material composed mainly of Ni, the first magnetic filler having a first grain size distribution, and a second magnetic filler having a second grain size distribution different from the first grain size distribution.
Abstract:
A Pb-free solder includes a first metal including at least Sn and Bi, and a second metal including at least an Ni—Fe alloy. In the first metal, the sum of Sn and Bi is 90 mass % or more, and a ratio of Bi is 5 to 15 mass %. A ratio of the second metal to the sum of mass of the first metal and mass of the second metal is 5 to 30 mass %
Abstract:
An electromagnetic component module includes: a molding resin provided so as to cover electronic components mounted on a substrate and a surface of the substrate; and a conductive shield formed so as to further cover the molding resin. The conductive shield includes a first filler and a second filler which are different from each other and the conductive shield is connected to ground wires exposed on lateral surfaces of the substrate. The average particle diameter of the first filler is ½ or less of the thickness of the ground wires and the second filler forms a metallic bond in the temperature range of 250 degrees Celsius or lower.
Abstract:
An electronic circuit module component includes: an electronic component; a circuit board including the electronic component mounted thereon; and a bonding metal disposed between a terminal electrode of the electronic component and a terminal electrode of the circuit board, and including Sn alloy phases, an Ni—Sn alloy phase that disperses and forms between the Sn alloy phases and includes at least Fe, and a plurality of holes that is formed inside the Ni—Sn alloy phase and has a diameter of 5 μm or less. A center distance between the holes adjacent to each other is 10 μm or more.
Abstract:
A manufacturing method of electronic module components according to the present invention includes: forming a plurality of module components on a principal surface of a substrate; forming a groove by dicing between the module components; spraying a conductive paste toward the principal surface of the substrate; and separating the module components. The spraying is performed so that an angle formed between a spray direction and the principal surface is an angle θ. The angle θ is set so as to satisfy the following expression (1), assuming that a depth of the groove is D and a width of the groove is w. the expression (1) is tan−1(D/2w)≦θ≦tan−1(2D/w)
Abstract:
A joint structure, in which an electronic component and a wiring substrate are joined to each other, includes: a base material of the electronic component; a base material of the wiring substrate; and a joint portion that includes at least an electrode of the electronic component and an electrode of the wiring substrate, and that joins the base material of the electronic component and the base material of the wiring substrate. The joint portion includes a material having an absorption coefficient of 2×10{circumflex over ( )}5 cm−1 or more for light of a wavelength of 250 to 1000 nm. The base material of at least one component of the electronic component and the wiring substrate consists of a material having an absorption coefficient of 1.5×10{circumflex over ( )}5 cm−1 or less for the light of a wavelength of 250 to 1000 nm.
Abstract:
Disclosed herein is a composite magnetic sealing material includes a resin material and a filler blended in the resin material in a blend ratio of 50 vol. % or more and 85 vol. % or less. The filler includes a first magnetic filler containing Fe and 32 wt. % or more and 39 wt. % or less of a metal material composed mainly of Ni, the first magnetic filler having a first grain size distribution, and a second magnetic filler having a second grain size distribution different from the first grain size distribution.
Abstract:
Disclosed herein is an electronic circuit package includes: a substrate having a power supply pattern; an electronic component mounted on a surface of the substrate; a mold resin covering the surface of the substrate so as to embed therein the electronic component; a laminated structure of a magnetic film and a metal film, the laminated structure covering at least an upper surface of the molding resin. The metal film is connected to the power supply pattern, and a resistance value at an interface between the magnetic film and the metal film is equal to or larger than 106Ω.