Abstract:
A method includes forming bottom conductive lines over a wafer. A first magnetic tunnel junction (MTJ) stack is formed over the bottom conductive lines. Middle conductive lines are formed over the first MTJ stack. A second MTJ stack is formed over the middle conductive lines. Top conductive lines are formed over the second MTJ stack.
Abstract:
A device comprises a first dielectric layer, a first conductor, a carbon-containing etch stop layer, a second dielectric layer, and a second conductor. The first conductor has a lower portion in the first dielectric layer. The carbon-containing etch stop layer wraps an upper portion of the first conductor. The second dielectric layer is over the carbon-containing etch stop layer. An interface formed by the second dielectric layer and the carbon-containing etch stop layer is higher over the first conductor than over the first dielectric layer. The second conductor is in the second dielectric layer.
Abstract:
A method for forming a semiconductor device structure is provided. The method includes forming a metal gate electrode structure and an insulating layer over the semiconductor substrate. The insulating layer surrounds the metal gate electrode structure. The method includes nitrifying a first top portion of the metal gate electrode structure to form a metal nitride layer over the metal gate electrode structure.
Abstract:
The semiconductor device includes a substrate, an epi-layer, a first etch stop layer, an interlayer dielectric (ILD) layer, a second etch stop layer, a protective layer, a liner, a silicide cap and a contact plug. The substrate has a first portion and a second portion. The epi-layer is disposed in the first portion. The first etch stop layer is disposed on the second portion. The ILD layer is disposed on the first etch stop layer. The second etch stop layer is disposed on the ILD layer, in which the first etch stop layer, the ILD layer and the second etch stop layer form a sidewall surrounding the first portion. The protective layer is disposed on the sidewall. The liner is disposed on the protective layer. The silicide cap is disposed on the epi-layer. The contact plug is disposed on the silicide cap and surrounded by the liner.
Abstract:
A method for manufacturing a semiconductor device includes forming two isolation structures in a substrate to define a fin structure between the two isolation structures in the substrate. A dummy gate and spacers are formed bridging the two isolation structures and over the fin structure. The two isolation structures are etched with the dummy gate and the spacers as a mask to form a plurality of slopes under the spacers in the two isolation structures. A gate etch stop layer is formed overlying the plurality of slopes. The dummy gate and the two isolation structures beneath the dummy gate are removed to create a cavity confined by the spacers and the gate etch stop layer. A gate is then formed in the cavity.
Abstract:
A method includes forming a memory stack over a substrate. A dielectric layer is deposited to cover the memory stack. An opening is formed in the dielectric layer. The opening does not expose the memory stack. A spin-orbit-torque (SOT) layer is formed in the opening. A free layer is formed over the dielectric layer to interconnect the memory stack and the SOT layer.
Abstract:
An interconnection structure includes a first dielectric layer, at least one first conductor, and an etch stop layer. The first conductor is disposed partially in the first dielectric layer and has a portion protruding from the first dielectric layer. The etch stop layer is disposed on the first dielectric layer and covers the protruding portion of the first conductor. The etch stop layer has a cap portion on a top surface of the protruding portion of the first conductor and a spacer portion on at least one sidewall of the protruding portion of the first conductor, and the spacer portion is thicker than the cap portion.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a first conductive structure over the substrate. The semiconductor device structure includes a first dielectric layer over the substrate. The first dielectric layer has a first opening exposing the first conductive structure. The semiconductor device structure includes a seal layer covering an inner wall of the first opening and in direct contact with the first dielectric layer. The seal layer includes a dielectric material including an oxygen compound. The semiconductor device structure includes a second conductive structure filled in the first opening and surrounded by the seal layer. The second conductive structure is electrically connected to the first conductive structure.
Abstract:
An interconnection structure includes a first dielectric layer, a first conductor, an etch stop layer, a second dielectric layer, and a second conductor. The first dielectric layer has at least one hole therein. The first conductor is disposed at least partially in the hole of the first dielectric layer. The etch stop layer is disposed on the first dielectric layer. The etch stop layer has an opening to at least partially expose the first conductor. The second dielectric layer is disposed on the etch stop layer and has at least one hole therein. The hole of the second dielectric layer is in communication with the opening of the etch stop layer. The second conductor is disposed at least partially in the hole of the second dielectric layer and is electrically connected to the first conductor through the opening of the etch stop layer.
Abstract:
A method for manufacturing a semiconductor device includes forming two isolation structures in a substrate to define a fin structure between the two isolation structures in the substrate. A dummy gate and spacers are formed bridging the two isolation structures and over the fin structure. The two isolation structures are etched with the dummy gate and the spacers as a mask to form a plurality of slopes under the spacers in the two isolation structures. A gate etch stop layer is formed overlying the plurality of slopes. The dummy gate and the two isolation structures beneath the dummy gate are removed to create a cavity confined by the spacers and the gate etch stop layer. A gate is then formed in the cavity.