Abstract:
Provided is a load-carrying or non-load carrying structural component for a vehicle having improved impact resistance, such as a gas tank protection shield, an underbody shield, a structural panel, an interior floor, a floor pan, a roof, an exterior surface, a storage area, a glove box, a console box, a trunk, a trunk floor, a truck bed, and combinations thereof. The component has a support structure with ridges, each spaced apart from one another at predetermined intervals, to form a corrugated surface capable of load-carrying. The ridges are longitudinally extending, raised ridges. The corrugated designs provide support structures that are impact resistant.
Abstract:
A vehicle component unit including a reinforcing open area core layer, a high gloss surface layer, and an encapsulating plastic layer. The reinforcing open area core layer has a first side and an oppositely opposed second side and a first end and an oppositely opposed second end each extending between the first side and the second side. The high gloss surface layer is positioned on the first side of the reinforcing open area core layer. The encapsulating plastic layer has a first end and a second end and is positioned on the second side of the reinforcing open are core layer. The first end and the second end of the encapsulating plastic layer are embedded into the high gloss surface layer with an embedded length L, such that the encapsulating plastic layer covers the first end and the second end of the reinforcing open area core layer.
Abstract:
The present invention provides a method for manufacturing a shaped product constituted by a fiber-reinforced composite material including reinforcing fibers and a thermoplastic resin. The shaped product maintains isotropy of the fibers to the end thereof even if press-molded under conditions in which charge ratio of a prepreg to a die is low. Specifically, the method includes using a specific prepreg obtained by impregnating the reinforcing fibers with thermoplastic resin, and molding-processing the prepreg under specific conditions.
Abstract:
A vehicle structure includes a battery tray disposed at a lower portion of a center of a vehicle body, and a cross member extending in a vehicle width direction and inserted into the battery tray. The battery tray includes a first bottom portion, a peripheral wall erected on an outer periphery of the first bottom portion, a first inner wall connected to the first bottom portion, a second inner wall connected to the first bottom portion, and a second bottom portion connected to both the first inner wall and the second inner wall and raised from the first bottom portion, which are configured with an integrally molded fiber-reinforced plastic. A recessed portion extending in the vehicle width direction is formed by the first inner wall, the second inner wall, and the second bottom portion. The cross member is inserted into at least one location of the recessed portion.
Abstract:
A shock resistant member which is lightweight and has a high degree of freedom in shape, and excellent shock resistance, is provided.A shock resistant member including an open cross-section part and a rib part present in an inside of the open cross-section part, in which at least one of the open cross-section part and the rib part includes a carbon-fiber-reinforced composite material including a thermoplastic resin, and the other may include a thermoplastic resin, and in which an amount of the thermoplastic resin present in the shock resistant member is 30 to 500 parts by mass based on 100 parts by mass of carbon fibers, and an average fiber length of the carbon fibers is 3 to 100 mm.
Abstract:
A battery tray for mounting a battery for driving a vehicle includes a bottom; a peripheral wall erected on an outer circumference of the bottom; a flange connected to a top of the peripheral wall and extending outwards of the peripheral wall; a first inner wall connected to the bottom, a bending angle between the first inner wall and the bottom being between 90 degrees and 135 degrees; a second inner wall connected to the bottom, a bending angle between the second inner wall and the bottom being between 90 degrees and 135 degrees; and a stud bolt pedestal connected to both the first inner wall and the second inner wall and provided above the bottom. The bottom, the peripheral wall, the flange, the first inner wall, the second inner wall, and the stud bolt pedestal being integrally molded from fiber reinforced plastics containing discontinuous fibers.
Abstract:
Provided is a load-carrying or non-load carrying structural component for a vehicle having improved impact resistance, such as a gas tank protection shield, an underbody shield, a structural panel, an interior floor, a floor pan, a roof, an exterior surface, a storage area, a glove box, a console box, a trunk, a trunk floor, a truck bed, and combinations thereof. The component has a support structure with ridges, each spaced apart from one another at predetermined intervals, to form a corrugated surface capable of load-carrying. The ridges are longitudinally extending, raised ridges. The corrugated designs provide support structures that are impact resistant.
Abstract:
The present invention provides a method for manufacturing a shaped product constituted by a fiber-reinforced composite material including reinforcing fibers and a thermoplastic resin. The shaped product maintains isotropy of the fibers to the end thereof even if press-molded under conditions in which charge ratio of a prepreg to a die is low. Specifically, the method includes using a specific prepreg obtained by impregnating the reinforcing fibers with thermoplastic resin, and molding-processing the prepreg under specific conditions.
Abstract:
Provided is a vehicle structure disposed at a lower portion of a center of a vehicle body, the vehicle structure including: a battery cover, a battery tray, and a structural member A for absorbing impact energy. Each of the battery cover and the battery tray is configured with an integrally molded fiber-reinforced plastic. The structural member A is located outside in a vehicle width direction of at least the battery cover and the battery tray. The structural member A is fastened together with the battery cover and the battery tray.
Abstract:
Provided is a load-carrying or non-load carrying structural component for a vehicle having improved impact resistance, such as a gas tank protection shield, an underbody shield, a structural panel, an interior floor, a floor pan, a roof, an exterior surface, a storage area, a glove box, a console box, a trunk, a trunk floor, a truck bed, and combinations thereof. The component has a support structure with ridges, each spaced apart from one another at predetermined intervals, to form a corrugated surface capable of load-carrying. The ridges are longitudinally extending, raised ridges. The corrugated designs provide support structures that are impact resistant.