4H-POLYTYPE GALLIUM NITRIDE-BASED SEMICONDUCTOR DEVICE ON A 4H-POLYTYPE SUBSTRATE
    1.
    发明申请
    4H-POLYTYPE GALLIUM NITRIDE-BASED SEMICONDUCTOR DEVICE ON A 4H-POLYTYPE SUBSTRATE 审中-公开
    4H-多晶型氮化镓基半导体器件在4H-多晶基片上

    公开(公告)号:US20090261362A1

    公开(公告)日:2009-10-22

    申请号:US12496271

    申请日:2009-07-01

    IPC分类号: H01L33/00

    摘要: 4H—InGaAlN alloy based optoelectronic and electronic devices on non-polar face are formed on 4H—AlN or 4H—AlGaN on (11-20) a-face 4H—SiC substrates. Typically, non polar 4H—AlN is grown on 4H—SiC (11-20) by molecular beam epitaxy (MBE). Subsequently, III-V nitride device layers are grown by metal organic chemical vapor deposition (MOCVD) with 4H-polytype for all of the layers. The non-polar device does not contain any built-in electric field due to the spontaneous and piezoelectric polarization. The optoelectronic devices on the non-polar face exhibits higher emission efficiency with shorter emission wavelength because the electrons and holes are not spatially separated in the quantum well. Vertical device configuration for lasers and light emitting diodes (LEDs) using conductive 4H—AlGaN interlayer on conductive 4H—SiC substrates makes the chip size and series resistance smaller. The elimination of such electric field also improves the performance of high speed and high power transistors. The details of the epitaxial growth s and the processing procedures for the non-polar III-V nitride devices on the non-polar SiC substrates are also disclosed.

    摘要翻译: 在(11-20)a面4H-SiC衬底上的4H-AlN或4H-AlGaN上形成4H-InGaAlN合金基非极性面上的光电子和电子器件。 通常,非极性4H-AlN通过分子束外延(MBE)在4H-SiC(11-20)上生长。 随后,通过用于所有层的4H-多型金属有机化学气相沉积(MOCVD)生长III-V族氮化物器件层。 由于自发和压电极化,非极性器件不包含任何内置的电场。 由于电子和空穴在量子阱中没有空间分离,非极性面上的光电器件表现出较短的发射波长的发射效率。 在导电4H-SiC衬底上使用导电4H-AlGaN夹层的激光器和发光二极管(LED)的垂直器件配置使芯片尺寸和串联电阻更小。 这种电场的消除也提高了高速和高功率晶体管的性能。 还公开了非极性SiC衬底上的非极性III-V族氮化物器件的外延生长细节和处理步骤。

    4H-polytype gallium nitride-based semiconductor device on a 4H-polytype substrate
    2.
    发明申请
    4H-polytype gallium nitride-based semiconductor device on a 4H-polytype substrate 审中-公开
    4H型多晶氮化镓基半导体器件

    公开(公告)号:US20050218414A1

    公开(公告)日:2005-10-06

    申请号:US10812416

    申请日:2004-03-30

    摘要: 4H-InGaAlN alloy based optoelectronic and electronic devices on non-polar face are formed on 4H-AlN or 4H-AlGaN on (11-20) a-face 4H-SiC substrates. Typically, non polar 4H-AlN is grown on 4H-SiC (11-20) by molecular beam epitaxy (MBE). Subsequently, III-V nitride device layers are grown by metal organic chemical vapor deposition (MOCVD) with 4H-polytype for all of the layers. The non-polar device does not contain any built-in electric field due to the spontaneous and piezoelectric polarization. The optoelectonic devices on the non-polar face exhibits higher emission efficiency with shorter emission wavelength because the electrons and holes are not spatially separated in the quantum well. Vertical device configuration for lasers and light emitting diodes(LEDs) using conductive 4H-AlGaN interlayer on conductive 4H-SiC substrates makes the chip size and series resistance smaller. The elimination of such electric field also improves the performance of high speed and high power transistors. The details of the epitaxial growth s and the processing procedures for the non-polar III-V nitride devices on the non-polar SiC substrates are also disclosed.

    摘要翻译: 在(11-20)a面4H-SiC衬底上的4H-AlN或4H-AlGaN上形成4H-InGaAlN合金基非极性面上的光电子和电子器件。 通常,非极性4H-AlN通过分子束外延(MBE)在4H-SiC(11-20)上生长。 随后,通过用于所有层的4H-多型金属有机化学气相沉积(MOCVD)生长III-V族氮化物器件层。 由于自发和压电极化,非极性器件不包含任何内置的电场。 由于电子和空穴在量子阱中空间不分开,非极性面上的光电子器件表现出更高的发射效率,发射波长更短。 在导电4H-SiC衬底上使用导电4H-AlGaN夹层的激光器和发光二极管(LED)的垂直器件配置使芯片尺寸和串联电阻更小。 这种电场的消除也提高了高速和高功率晶体管的性能。 还公开了非极性SiC衬底上的非极性III-V族氮化物器件的外延生长细节和处理步骤。

    Method of growing semiconductor crystal
    3.
    发明授权
    Method of growing semiconductor crystal 有权
    生长半导体晶体的方法

    公开(公告)号:US07625447B2

    公开(公告)日:2009-12-01

    申请号:US10549683

    申请日:2004-03-18

    IPC分类号: C30B23/00

    摘要: SiC is a very stable substance, and it is difficult to control the condition of a SiC surface to be suitable for crystal growth in conventional Group III nitride crystal growing apparatuses. This problem is solved as follows. The surface of a SiC substrate 1 is rendered into a step-terrace structure by performing a heating process in an atmosphere of HCl gas. The surface of the SiC substrate 1 is then treated sequentially with aqua regia, hydrochloric acid, and hydrofluoric acid. A small amount of silicon oxide film formed on the surface of the SiC substrate 1 is etched so as to form a clean SiC surface 3 on the substrate surface. The SiC substrate 1 is then installed in a high-vacuum apparatus and the pressure inside is maintained at ultrahigh vacuum (such as 10−6 to 10−8 Pa). In the ultrahigh vacuum state, a process of irradiating the surface with a Ga atomic beam 5 at time t1 at temperature of 800° C. or lower and performing a heating treatment at 800° C. or higher is repeated at least once. The temperature is then set to the growth temperature of an AlN film, and the SiC substrate surface 3 is initially irradiated with Al atoms 8a in ultrahigh vacuum state, followed by the feeding of N atoms 8b.

    摘要翻译: SiC是非常稳定的物质,在传统的III族氮化物晶体生长装置中难以控制SiC表面适合于晶体生长的状态。 这个问题解决如下。 通过在HCl气体气氛中进行加热处理,将SiC衬底1的表面制成台阶平台结构。 然后依次用王水,盐酸和氢氟酸处理SiC衬底1的表面。 蚀刻形成在SiC衬底1的表面上的少量氧化硅膜,从而在衬底表面上形成清洁的SiC表面3。 然后将SiC基板1安装在高真空装置中,并且内部的压力保持在超高真空(例如10-6至10-8Pa)。 在超高真空状态下,在800℃以下的温度下在时刻t1的Ga原子束5照射表面,进行800℃以上的加热处理的工序至少重复一次。 然后将温度设定为AlN膜的生长温度,并且首先用超高真空状态的Al原子8a照射SiC衬底表面3,然后馈送N原子8b。

    Method of growing semiconductor crystal
    4.
    发明申请
    Method of growing semiconductor crystal 有权
    生长半导体晶体的方法

    公开(公告)号:US20060180077A1

    公开(公告)日:2006-08-17

    申请号:US10549683

    申请日:2004-03-18

    摘要: SiC is a very stable substance, and it is difficult to control the condition of a SiC surface to be suitable for crystal growth in conventional Group III nitride crystal growing apparatuses. This problem is solved as follows. The surface of a SiC substrate 1 is rendered into a step-terrace structure by performing a heating process in an atmosphere of HCl gas. The surface of the SiC substrate 1 is then treated sequentially with aqua regia, hydrochloric acid, and hydrofluoric acid. A small amount of silicon oxide film formed on the surface of the SiC substrate 1 is etched so as to form a clean SiC surface 3 on the substrate surface. The SiC substrate 1 is then installed in a high-vacuum apparatus and the pressure inside is maintained at ultrahigh vacuum (such as 10−6 to 10−8 Pa). In the ultrahigh vacuum state, a process of irradiating the surface with a Ga atomic beam 5 at time t1 at temperature of 800° C. or lower and performing a heating treatment at 800° C. or higher is repeated at least once. The temperature is then set to the growth temperature of an AlN film, and the SiC substrate surface 3 is initially irradiated with —Al atoms 8a in ultrahigh vacuum state, followed by the feeding of N atoms 8b.

    摘要翻译: SiC是非常稳定的物质,在传统的III族氮化物晶体生长装置中难以控制SiC表面适合于晶体生长的状态。 这个问题解决如下。 通过在HCl气体气氛中进行加热处理,将SiC衬底1的表面制成台阶平台结构。 然后依次用王水,盐酸和氢氟酸处理SiC衬底1的表面。 蚀刻形成在SiC衬底1的表面上的少量氧化硅膜,从而在衬底表面上形成清洁的SiC表面3。 然后将SiC基板1安装在高真空装置中,并且内部的压力保持在超高真空(例如10 -6至10 -8 Pa)。 在超高真空状态下,在800℃以下的温度下,在时刻t 1的Ga原子束5照射表面,进行800℃以上的加热处理,至少重复一次。 然后将温度设定为AlN膜的生长温度,并且首先用超高真空状态的-Al原子8a照射SiC衬底表面3,然后馈送N原子8b。