摘要:
4H—InGaAlN alloy based optoelectronic and electronic devices on non-polar face are formed on 4H—AlN or 4H—AlGaN on (11-20) a-face 4H—SiC substrates. Typically, non polar 4H—AlN is grown on 4H—SiC (11-20) by molecular beam epitaxy (MBE). Subsequently, III-V nitride device layers are grown by metal organic chemical vapor deposition (MOCVD) with 4H-polytype for all of the layers. The non-polar device does not contain any built-in electric field due to the spontaneous and piezoelectric polarization. The optoelectronic devices on the non-polar face exhibits higher emission efficiency with shorter emission wavelength because the electrons and holes are not spatially separated in the quantum well. Vertical device configuration for lasers and light emitting diodes (LEDs) using conductive 4H—AlGaN interlayer on conductive 4H—SiC substrates makes the chip size and series resistance smaller. The elimination of such electric field also improves the performance of high speed and high power transistors. The details of the epitaxial growth s and the processing procedures for the non-polar III-V nitride devices on the non-polar SiC substrates are also disclosed.
摘要:
4H-InGaAlN alloy based optoelectronic and electronic devices on non-polar face are formed on 4H-AlN or 4H-AlGaN on (11-20) a-face 4H-SiC substrates. Typically, non polar 4H-AlN is grown on 4H-SiC (11-20) by molecular beam epitaxy (MBE). Subsequently, III-V nitride device layers are grown by metal organic chemical vapor deposition (MOCVD) with 4H-polytype for all of the layers. The non-polar device does not contain any built-in electric field due to the spontaneous and piezoelectric polarization. The optoelectonic devices on the non-polar face exhibits higher emission efficiency with shorter emission wavelength because the electrons and holes are not spatially separated in the quantum well. Vertical device configuration for lasers and light emitting diodes(LEDs) using conductive 4H-AlGaN interlayer on conductive 4H-SiC substrates makes the chip size and series resistance smaller. The elimination of such electric field also improves the performance of high speed and high power transistors. The details of the epitaxial growth s and the processing procedures for the non-polar III-V nitride devices on the non-polar SiC substrates are also disclosed.
摘要:
SiC is a very stable substance, and it is difficult to control the condition of a SiC surface to be suitable for crystal growth in conventional Group III nitride crystal growing apparatuses. This problem is solved as follows. The surface of a SiC substrate 1 is rendered into a step-terrace structure by performing a heating process in an atmosphere of HCl gas. The surface of the SiC substrate 1 is then treated sequentially with aqua regia, hydrochloric acid, and hydrofluoric acid. A small amount of silicon oxide film formed on the surface of the SiC substrate 1 is etched so as to form a clean SiC surface 3 on the substrate surface. The SiC substrate 1 is then installed in a high-vacuum apparatus and the pressure inside is maintained at ultrahigh vacuum (such as 10−6 to 10−8 Pa). In the ultrahigh vacuum state, a process of irradiating the surface with a Ga atomic beam 5 at time t1 at temperature of 800° C. or lower and performing a heating treatment at 800° C. or higher is repeated at least once. The temperature is then set to the growth temperature of an AlN film, and the SiC substrate surface 3 is initially irradiated with Al atoms 8a in ultrahigh vacuum state, followed by the feeding of N atoms 8b.
摘要:
SiC is a very stable substance, and it is difficult to control the condition of a SiC surface to be suitable for crystal growth in conventional Group III nitride crystal growing apparatuses. This problem is solved as follows. The surface of a SiC substrate 1 is rendered into a step-terrace structure by performing a heating process in an atmosphere of HCl gas. The surface of the SiC substrate 1 is then treated sequentially with aqua regia, hydrochloric acid, and hydrofluoric acid. A small amount of silicon oxide film formed on the surface of the SiC substrate 1 is etched so as to form a clean SiC surface 3 on the substrate surface. The SiC substrate 1 is then installed in a high-vacuum apparatus and the pressure inside is maintained at ultrahigh vacuum (such as 10−6 to 10−8 Pa). In the ultrahigh vacuum state, a process of irradiating the surface with a Ga atomic beam 5 at time t1 at temperature of 800° C. or lower and performing a heating treatment at 800° C. or higher is repeated at least once. The temperature is then set to the growth temperature of an AlN film, and the SiC substrate surface 3 is initially irradiated with —Al atoms 8a in ultrahigh vacuum state, followed by the feeding of N atoms 8b.