Abstract:
A method of coating a component including aluminizing an array of internal passageways within the component; and chromizing a portion of the array of internal passageways within the component. A component, including an airfoil having an array of aluminized internal passageways, the array of aluminized internal passageways chromized up to a demarcation.
Abstract:
An apparatus for use in a physical vapor deposition coating process includes a chamber, a crucible configured to hold a ceramic coating material in the chamber, an energy source operable to heat the interior of the chamber, a fixture for holding at least one substrate in the chamber, an actuator operable to rotate the fixture, and a controller configured to establish a plume of the ceramic coating material in the chamber to deposit the ceramic coating material from the plume onto the at least one substrate and form a ceramic coating thereon, and during the deposition, rotate the at least one substrate at a rotational speed selected with respect to deposition rate of the ceramic coating material onto the at least one substrate.
Abstract:
The present disclosure relates to an improved low-cost metallic coating to be deposited on gas turbine engine components. The metallic coating consists of 1.0 to 18 wt % cobalt, 3.0 to 18 wt % chromium, 5.0 to 15 wt % aluminum, 0.01 to 1.0 wt % yttrium, 0.01 to 0.6 wt % hafnium, 0.0 to 0.3 wt % silicon, 0.0 to 1.0 wt % zirconium, 0.0 to 10 wt % tantalum, 0.0 to 9.0 wt % tungsten, 0.0 to 10 wt % molybdenum, 0.0 to 43.0 wt % platinum, and the balance nickel.
Abstract:
A coating system for coating a part (10), such as a turbine blade or vane, has a mask (14) positioned adjacent to a first portion (16) of the part (10) to be coated and a mechanism (30) for moving the mask (14) relative to the part (10). The mechanism (30) may be a gear mechanism or a magnetic mechanism.
Abstract:
A blade outer airseal has a body comprising: an inner diameter (ID) surface; an outer diameter (OD) surface; a leading end; and a trailing end. The airseal body has a metallic substrate and a coating system atop the substrate along at least a portion of the inner diameter surface. At least over a first area of the inner diameter surface, the coating system comprises an abradable layer comprising a metallic matrix and a solid lubricant; and the metallic matrix comprises, by weight, ≧35% nickel, 12.0-20.0% cobalt, 5.0-15.0% aluminum, and 5.0-15.0% chromium.
Abstract:
A cathodic arc coating apparatus includes a vessel, a cathode disposed in the vessel, and a stinger assembly. The stinger assembly includes a first magnetic field generator disposed in a first stinger cup in selective contact with the cathode. The first stinger cup has at least a first electrically conductive cup portion spaced from a second electrically conductive cup portion by a thermally insulating layer therebetween.
Abstract:
A method includes casting a metallic material (56) in a mold (20) containing a core, the core having a substrate (40, 44) coated with a coating (42). A removing of the metallic material from the mold and decoring leaves a casting having a layer formed by the coating. The coating has a ceramic having a porosity in a zone (50) near the substrate less than a porosity in a zone (52) away from the substrate.
Abstract:
An embodiment of an apparatus includes means for peripherally welding a cavity-back blade and a cover of the cavity-back blade to form a 3-dimensional hollow blade assembly, and a plurality of bellows contained in one or both of a first die half and a second die half receiving the 3-dimensional hollow blade assembly. The plurality of bellows are disposed within the region defined around or inward of the peripherally welded interface of the cover and the blade. At least a portion of the plurality of bellows are arranged in a manner to provide pressure to the cover at approximately a 90 degree angle to each of a plurality of nodes, each node defined by an intersection of two or more ribs in the cavity-back blade.
Abstract:
A coating method includes vaporizing a portion of a cathode to form a metallic plasma, and directing the metallic plasma toward the workpiece. A first magnetic field generator, disposed in a first electrically conductive portion of a first stinger cup, is operated to steer the electrical arc about at least one evaporative surface of the cathode. a second portion of the electrically conductive stinger cup is selectively contacted with the cathode, and the first portion of the first stinger cup is spaced from the second portion from by a thermally insulating layer therebetween. The thermally insulating layer is disposed directly between the first magnetic field generator and the cathode when the first stinger cup is in contact with the cathode.
Abstract:
A method for coating a turbine engine component comprises the steps of: providing a turbine engine component having at least one sacrificial attachment on a first side; grasping the turbine engine component via the at least one sacrificial attachment to position a first surface of the turbine engine component relative to a source of coating material; and applying a coating to said first side.