Abstract:
A stud bump structure and method for manufacturing the same are provided. The stud bump structure includes a substrate, and a first silver alloy stud bump disposed on the substrate, wherein the first silver alloy stud bump has a weight percentage ratio of Ag:Au:Pd=60-99.98:0.01-30:0.01-10.
Abstract:
A metallic ribbon for power module packaging is described. The metallic ribbon has a rectangular, oval or oblong cross section. The composition of the metallic ribbon is silver-palladium alloy containing 0.2 to 6 wt % Pd. The metallic ribbon has a thickness of 10 μm to 500 μm. The width of the metallic ribbon is 2 to 100 times its thickness. The metallic ribbon includes a plurality of grains. The average grain size of the grains observed in the transverse cross section is 2 μm to 10 μm. The metallic ribbon has a plurality of twin grains observed in the transverse cross section, and the number of twin grains observed in the transverse cross section accounts for at least 5% of the total number of grains observed in the transverse cross section.
Abstract:
The invention provides a composite wire for electronic package, the composite wire including an alloy core member and a plating layer forming on a surface of the alloy core member. The alloy core member is silver-palladium alloy. The plating layer is at least one layer of thin film of pure gold, pure palladium or gold-palladium alloy. The invention also provides a method for manufacturing the composite wire. The method includes steps of: (a) providing a wire rod, (b) forming a wire having a predetermined diameter from the wire rod by a plurality of processes including cold working and annealing and (c) forming a plating layer on a surface of the wire rod before step (b) or forming a plating layer on a surface of the wire after step (b) by electroplating, sputtering or vacuum evaporation.