摘要:
A position detector having a magnetic sensor for measuring linear or angular displacement, or detecting a position of a body without contact thereto. The detector has a closed circuit including magnets and yokes. The magnetic leakage flux which emanates from the inside surfaces of the yokes is utilized to detect the position of the body. The magnetic sensor is transferred along the inside surfaces of the yokes by a transferring circuit, which senses the magnetic field intensity of the leakage flux distributed thereon. This enables the detector to have a longer measuring range than that of a prior art detectors. An output signal is stable due to the shielding effect of the yokes. The magnetic closed circuit has many magnetic and mechanical configurations. For example, for the magnet, a permanent magnet and an electromagnet can be used. Further, improvements are proposed for enhancing the linearity of the output signal voltage with respect to the transferring distance of the sensing element and for compensating the offset drift of an amplifier or changing the coercive force of permanent magnets.
摘要:
A piezoelectric resonator with a rectangular parallelepiped resonator. A lithium niobate single crystal is used as the resonator chip material. Each of the opposed main surfaces of the resonator chip is arranged to be a surface of a rotated Y-cut plate which is rotated 165.+-.5 degrees about an X-axis. The angle of the longitudinal direction of the resonator chip is arranged to be 90.+-.5 degrees with respect to the X-axis of the rotated Y-cut plate.
摘要:
A piezoelectric resonator chip which includes a piezoelectric chip plate and a pair of electrode patterns which is formed on the opposite surfaces of the piezoelectric chip plate, the electrode patterns face each other through the piezoelectric chip plate. At least one of the electrode patterns has an adjuster pattern which includes a narrow cutting pattern and a separation pattern which is connected to the electrode pattern through the cutting pattern and which faces the other electrode pattern.
摘要:
A piezoelectric resonator which resonates in thickness shear mode. The piezoelectric resonator includes a strip shaped resonance chip made of an X-cut plate of lithium tantalate crystal and having a rectangular cross-section. Electrodes are formed at the center portion with respect to the longitudinal direction of the resonance chip on each of two X-plane surfaces. The width of the electrodes is equal to the width of the resonance chip. The longitudinal direction of the resonance chip inclines with respect to the Y-axis by an angle of 50.degree..+-.2' in the clockwise direction in the X-plane so as to make the longitudinal direction of the resonance chip coincide with the displacement direction of primary oscillation of the crystal. Optimal ratios of the dimensions of the resonance chip and terminal connectors at the ends of the resonance chip are given to reduce spurious response. The temperature characteristic is optimized by selecting rotation angles about the Y-and Z-axes in relation to the amount of trapped energy.
摘要:
An acoustic surface wave device comprises a piezoelectric substrate (1), an input transducer (2), an output transducer (3) and acoustical absorbent layer patterns (5, 6) for absorbing undesired acoustic surface waves and bulk waves (S.sub.4, S.sub.5). Each of the acoustical absorbent layer patterns (5, 6) has zigzag-shaped or triangular shaped edges, i.e., a recess portion (R.sub.1, R.sub.3) and a protruding portion (R.sub.2, R.sub.4). The recess portion has a further recess portion (R.sub.1 ', R.sub.3 ') which is formed diagonally with respect to the propagation path of acoustic surface waves.
摘要:
A piezoelectric resonator includes a base plate and a strip-type, energy trapping piezoelectric resonator chip mounted on the base plate. The piezoelectric resonator chip includes a piezoelectric chip plate and a pair of electrode patterns formed on the opposed main surfaces of the piezoelectric chip plate. One main surface of the piezoelectric chip plate faces the base plate and is parallel therewith, and a conductive layer is formed on each end of the main surface facing the base plate. The thickness of the conductive layer is greater than that of the electrode pattern so that the electrode pattern is separated from the base plate. The conductive layer is directly mounted onto a conductive portion of the base plate, so as to electrically connect the electrode pattern and the conductive portion of the base plate.
摘要:
A double-mode surface-acoustic device having a piezoelectric substrate with two reflectors placed on the piezoelectric substrate and first through third interdigital electrodes placed on the substrate consecutively between the two reflectors. Each electrode containing first through third number of pairs of electrode fingers, respectively.
摘要:
A surface acoustic wave device supported by a package body. At least one surface acoustic wave element having interdigital electrodes disposed on a propagation path of a surface acoustic wave on the piezoelectric substrate. These interdigital electrodes include an input-side interdigital electrode connected to a ground pad on the package body and an output-side interdigital electrode connected to another ground pad on the package body.
摘要:
A tuning-fork vibratory gyro has first and second arms and a base integrally connected to the first and second arms. The gyro includes drive electrodes used to generate tuning-fork vibrations due to a piezoelectric transversal effect, and detection electrodes provided on the first and second arms and used to output a detection voltage due to an angular velocity.
摘要:
A surface acoustic wave device includes: interdigital transducers; first electrode pads that are connected to the interdigital transducers through wire patterns; and a piezoelectric substrate on which the interdigital transducers, the first electrode pads, and the wire patterns, are formed. In this surface acoustic wave device, at least one of the first electrode pads is not connected to a ground pattern, and the piezoelectric substrate has a conductivity in the range of 10−12/Ω·cm to 10−6/Ω·cm.