摘要:
In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film. A dielectric film is formed on the lower electrodes and the deposition preventing film at a predetermined temperature. The material of the lower electrodes does not lose conduction even when exposed to the predetermined temperature employed for forming the dielectric film. Upper electrodes are further formed on the dielectric film. The upper and lower electrodes and an oxide dielectric film together constitute capacitors of the memory cells.
摘要:
In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film.
摘要:
In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film. A dielectric film is formed on the lower electrodes and the deposition preventing film at a predetermined temperature. The material of the lower electrodes does not lose conduction even when exposed to the predetermined temperature employed for forming the dielectric film. Upper electrodes are further formed on the dielectric film. The upper and lower electrodes and an oxide dielectric film together constitute capacitors of the memory cells.
摘要:
In a semiconductor device including a plurality of memory cells, a deposition preventing film is formed on an interlayer insulating film in which a plurality of holes are formed, or a seed film is selectively formed on the interlayer insulating film and on an inner surface and a bottom surface of the holes. A film of Ru, Ir or Pt is deposited by chemical vapor deposition on the deposition preventing film, or on the interlayer insulating film by utilizing the seed film, under the condition where underlayer dependency occurs. In consequence, lower electrodes are formed in accordance with a pattern of the deposition preventing film or the seed film. A dielectric film is formed on the lower electrodes and the deposition preventing film at a predetermined temperature. The material of the lower electrodes does not lose conduction even when exposed to the predetermined temperature employed for forming the dielectric film. Upper electrodes are further formed on the dielectric film. The upper and lower electrodes and an oxide dielectric film together constitute capacitors of the memory cells.
摘要:
A ruthenium electrode with a low amount of oxygen contamination and high thermal stability is formed by a chemical vapor deposition method. In the chemical vapor deposition method using an organoruthenium compound as a precursor, the introduction of an oxidation gas is limited to when the precursor is supplying, and the reaction is allowed to occur at a low oxygen partial pressure. Consequently, it is possible to form a ruthenium film with a low amount of oxygen contamination. Further, after formation of the ruthenium film, annealing at not less than the formation temperature is performed, thereby forming a ruthenium film with high thermal stability.
摘要:
A process for forming the lower and upper electrodes of a high dielectric constant capacitor in a semiconductor device from an organoruthenium compound by chemical vapor deposition. This chemical vapor deposition technique employs an organoruthenium compound, an oxidizing gas, and a gas (such as argon) which is hardly adsorbed to the ruthenium surface or a gas (such as ethylene) which is readily adsorbed to the ruthenium surface. This process efficiently forms a ruthenium film with good conformality in a semiconductor device.
摘要:
In the method of manufacturing a semiconductor device according to this invention, when an interlayer insulating film is fabricated such that an opening is cylindrical and low-pressure and long-throw sputtering is used for forming a lower ruthenium electrode, a ruthenium film can be deposited on the side wall of a deep hole. Further, after removing the ruthenium film deposited on the upper surface of the interlayer insulating film, a dielectric material comprising, for example, a tantalum pentoxide film is deposited. Successively, an upper ruthenium electrode is deposited using, for example, Ru(EtCp)2 as a starting material and by chemical vapor deposition of conveying the starting material by bubbling. The upper ruthenium electrode can be formed with good coverage by using conditions that the deposition rate of the ruthenium film depends on the formation temperature (reaction controlling condition). This invention can provide a fine concave type capacitor having a ruthenium electrode.
摘要翻译:在根据本发明的半导体器件的制造方法中,当制造使得开口为圆柱形的层间绝缘膜并且使用低压和长距离溅射来形成下部钌电极时,可以沉积钌膜 在一个深孔的侧壁上。 此外,在除去沉积在层间绝缘膜的上表面上的钌膜之后,沉积包括例如五氧化二钽膜的电介质材料。 接着,使用例如Ru(EtCp)2 N 2作为起始材料并通过化学气相沉积,通过鼓泡输送起始材料来沉积上钌电极。 通过使用钌膜的沉积速率取决于形成温度(反应控制条件)的条件,可以形成具有良好覆盖度的上钌电极。 本发明可以提供一种具有钌电极的细凹型电容器。
摘要:
A process for forming the lower and upper electrodes of a high dielectric constant capacitor in a semiconductor device from an organoruthenium compound by chemical vapor deposition. This chemical vapor deposition technique employs an organoruthenium compound, an oxidizing gas, and a gas (such as argon) which is hardly adsorbed to the ruthenium surface or a gas (such as ethylene) which is readily adsorbed to the ruthenium surface. This process efficiently forms a ruthenium film with good conformality in a semiconductor device.
摘要:
A semiconductor integrated circuit in which the storage capacitor has an increased capacitance and a decreased leakage current. The storage capacitor is formed by the steps of: forming a polysilicon bottom electrode having semispherical silicon crystals formed thereon; performing plasma nitriding on the surface of said bottom electrode at a temperature lower than 550° C., thereby forming a film of silicon nitride having a film thickness smaller than 1.5 nm; and depositing a film of amorphous tantalum pentoxide and then crystallizing said amorphous tantalum pentoxide. The silicon nitride film has improved resistance to oxidation and also has a reduced leakage current. As a result, the polysilicon bottom electrode becomes resistant to oxidation and the storage capacitor increases in capacitance and decreases in leakage current.
摘要:
In a method for manufacturing an FET having a gate insulation film with an SiO2 equivalent thickness of 2 nm or more and capable of suppressing the leak current to {fraction (1/100)} or less compared with existent SiO2 films, an SiO2 film of 0.5 nm or more is formed at a boundary between an Si substrate (polycrystalline silicon gate) and a high dielectric insulation film, and the temperature for forming the SiO2 film is made higher than the source-drain activating heat treatment temperature in the subsequent steps. As such, a shifting threshold voltage by the generation of static charges or lowering of a drain current caused by degradation of mobility can be prevented so as to reduce electric power consumption and increase current in a field effect transistor of a smaller size.