Abstract:
A method of forming a nano-coating on a substrate comprises: depositing a first layer on a surface of the substrate, the first layer comprising a polymeric composition; depositing a second layer on the surface of the first layer opposite the substrate, the second layer comprising nanographene derivatized with a functional group selected from the group consisting of carboxy, epoxy, ether, ketone, amine, hydroxyl, alkoxy, alkyl, lactones, aryl, functionalized polymeric, functionalized oligomeric groups, and combinations thereof; and repeating the foregoing steps such that multiple alternating layers are formed, wherein each successive occurrence of the first layer is deposited on a previously deposited occurrence of the second layer.
Abstract:
A composite includes a substrate, a binder layer disposed on a surface of the substrate; and a nanofiller layer comprising nanographene and disposed on a surface of the binder layer opposite the substrate. In addition, a nano-coating layer for coating a substrate includes multiple alternating layers of the binder layer and the nanofiller layer. Articles coated with the nano-coating layer prepared from alternating layers of nanofiller layer and binder layer have improved barrier properties, and may be used in down-hole applications.
Abstract:
Disclosed is a n atmospheric-pressure double-plasma graft polymerization apparatus. The apparatus includes a workbench, an initial roller of a roll-to-roll device, an atmospheric-pressure plasma activation device, a peroxide formation device, a coating and grafting device, a drying device, a graft polymerization and curing device, a curing device and a final roller of a roll-to-roll device. The devices are sequentially provided on the workbench.
Abstract:
The invention relates to a process for the preparation of a composite material, said composite material comprising a substrate and a layer on the substrate, comprising a vapour-depositing step in which a compound comprising a triazine compound is deposited on the substrate at a pressure below 1000 Pa, whereby the layer is formed, wherein during the vapour-depositing step the temperature of the substrate lies between −15 ° C. and +125 ° C. The invention further relates to a composite material, obtainable by the process as disclosed.
Abstract:
A process of producing a high gloss oxidizable extrusion coated polyethylene is provided. This process entails extrusion coating a low density polyethylene of narrow molecular weight distribution having a low melt index, a low swell ratio, and a polydispersity index below 9.
Abstract:
1. IN THE METHOD OF PREPARING AN OBJECT HAVING AN ELASTOMERIC SURFACE FOR ADHERENCE OF A COATING THEREON, THE STEPS OF PRODUCING THE OBJECT WITH A SURFACE CONTAINING AN EPDM ELASTOMERIC MATERIAL HAVING AT LEAST 2 CARBON TO CARBON DOUBLE BONDS PER 1000 CARBON ATOMS, EXPOSING THE SURFACE TO BE COATED TO REACTIVE CONDITIONS THROUGH THE UNSATURATED GROUPS, TO OZONE FOR AT LEAST 5 SECONDS, AND COATING THE EXPOSED SURFACE WITH AN ORGANO SILICON COMPOUND IN THE FORM OF A SILANE, ITS HYDROLYSIS PRODUCT OR ITS POLYMERIZATION PRODUCT IN WHICH THE SILANE HAS FROM 1 TO 3 HIGHLY HYDROLYZABLE GROUPS AND AT LEAST ONE ORGANIC GROUP ATTACHED TO THE SILICON ATOM CONTAINING A MERCAPTO GROUP.
Abstract:
A regenerable antimicrobial coating with long-lasting efficacy for use in medical applications including implants, medical instruments or devices, and hospital equipment is disclosed. The regenerable antimicrobial coating is derived from a polymer doped with a metal derivative which has been exposed to vapor-phase hydrogen peroxide, wherein hydrogen peroxide is sequestered in or on the doped polymer.
Abstract:
Disclosed is an atmospheric-pressure double-plasma graft polymerization apparatus. The apparatus includes a workbench, an initial roller of a roll-to-roll device, an atmospheric-pressure plasma activation device, a peroxide formation device, a coating and grafting device, a drying device, a graft polymerization and curing device, a curing device and a final roller of a roll-to-roll device. The devices are sequentially provided on the workbench.
Abstract:
The invention relates to a process for the production of strongly adherent coatings on an inorganic or organic substrate, wherein in a first step a) a low-temperature plasma, a corona discharge or a flame is caused to act on the inorganic or organic substrate, in a second step b) one or more defined photoinitiators or mixtures of defined photoinitiators with monomers, containing at least one ethylenically unsaturated group, or solutions, suspensions or emulsions of the afore-mentioned substances, are applied, preferably at normal pressure, to the inorganic or organic substrate, in a third step c) using suitable methods those afore-mentioned substances are dried and/or irradiated with electromagnetic waves and, optionally, in a fourth step d) on the substrate so pretreated is applied a further coating.