Abstract:
A micro-electromechanical-system (MEMS) device may be formed to include an anti-stiction polysilicon layer on one or more moveable MEMS structures of a device wafer of the MEMS device to reduce, minimize, and/or eliminate stiction between the moveable MEMS structures and other components or structures of the MEMS device. The anti-stiction polysilicon layer may be formed such that a surface roughness of the anti-stiction polysilicon layer is greater than the surface roughness of a bonding polysilicon layer on the surfaces of the device wafer that are to be bonded to a circuitry wafer of the MEMS device. The higher surface roughness of the anti-stiction polysilicon layer may reduce the surface area of the bottom of the moveable MEMS structures, which may reduce the likelihood that the one or more moveable MEMS structures will become stuck to the other components or structures.
Abstract:
A method for fabricating a MEMS device includes depositing and patterning a first sacrificial layer onto a silicon substrate, the first sacrificial layer being partially removed leaving a first remaining oxide. Further, the method includes depositing a conductive structure layer onto the silicon substrate, the conductive structure layer making physical contact with at least a portion of the silicon substrate. Further, a second sacrificial layer is formed on top of the conductive structure layer. Patterning and etching of the silicon substrate is performed stopping at the second sacrificial layer. Additionally, the MEMS substrate is bonded to a CMOS wafer, the CMOS wafer having formed thereupon a metal layer. An electrical connection is formed between the MEMS substrate and the metal layer.
Abstract:
The present disclosure provides a device having a doped active region disposed in a substrate. The doped active region having an elongate shape and extends in a first direction. The device also includes a plurality of first metal gates disposed over the active region such that the first metal gates each extend in a second direction different from the first direction. The plurality of first metal gates includes an outer-most first metal gate having a greater dimension measured in the second direction than the rest of the first metal gates. The device further includes a plurality of second metal gates disposed over the substrate but not over the doped active region. The second metal gates contain different materials than the first metal gates. The second metal gates each extend in the second direction and form a plurality of respective N/P boundaries with the first metal gates.
Abstract:
A bond free of an anti-stiction layer and bonding method is disclosed. An exemplary method includes forming a first bonding layer; forming an interlayer over the first bonding layer; forming an anti-stiction layer over the interlayer; and forming a liquid from the first bonding layer and interlayer, such that the anti-stiction layer floats over the first bonding layer. A second bonding layer can be bonded to the first bonding layer while the anti-stiction layer floats over the first bonding layer, such that a bond between the first and second bonding layers is free of the anti-stiction layer.
Abstract:
A method of manufacturing microstructures, such as MEMS or NEMS devices, including forming a protective layer on a surface of a moveable component of the microstructure. For example, a silicide layer may be formed on one or more surfaces of a poly-silicon mass that is moveable with respect to a substrate of the microstructure. The process may be self-aligning.
Abstract:
A mechanism is provided for reducing stiction in a MEMS device by forming a near-uniform silicon carbide layer on silicon surfaces using carbon from TEOS-based silicon oxide sacrificial films used during fabrication. By using the TEOS as a source of carbon to form an antistiction coating, all silicon surfaces can be coated, including those that are difficult to coat using standard self-assembled monolayer (SAM) processes (e.g., locations beneath the proof mass). Controlled processing parameters, such as temperature, length of time for annealing, and the like, provide for a near-uniform silicon carbide coating not provided by previous processes.
Abstract:
A bond free of an anti-stiction layer and bonding method is disclosed. An exemplary method includes forming a first bonding layer; forming an interlayer over the first bonding layer; forming an anti-stiction layer over the interlayer; and forming a liquid from the first bonding layer and interlayer, such that the anti-stiction layer floats over the first bonding layer. A second bonding layer can be bonded to the first bonding layer while the anti-stiction layer floats over the first bonding layer, such that a bond between the first and second bonding layers is free of the anti-stiction layer.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing an amount of carbon from TEOS-based silicon oxide films that can accumulate on polysilicon surfaces during fabrication is provided. A carbon barrier material film is deposited between one or more polysilicon layer in a MEMS device and the TEOS-based silicon oxide layer. This barrier material blocks diffusion of carbon into the polysilicon, thereby reducing accumulation of carbon on the polysilicon surfaces. By reducing the accumulation of carbon, the opportunity for stiction due to the presence of the carbon is similarly reduced.
Abstract:
The present invention describes a deposition method suitable for depositing a coating on a device. The method is particularly suited for depositing a self assembled monolayer (SAM) coating on a micro electro-mechanical structures (MEMS). The method employs carrier gases in order to form a deposition vapour in a process chamber within which the device is located wherein the deposition vapour comprises controlled amounts of a vapour precursor material and a vapour reactant material. Employing the described technique avoids the problematic effects of particulate contamination of the device even when the volumetric ratio of the reactant material to the precursor material is significantly higher than those ratios previously employed in the art. The vapour precursor material can be of a type that provides the MEMS with an anti-stiction coating with the associated vapour reactant material comprising water.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing an amount of carbon from TEOS-based silicon oxide films that can accumulate on polysilicon surfaces during fabrication is provided. A carbon barrier material film is deposited between one or more polysilicon layer in a MEMS device and the TEOS-based silicon oxide layer. This barrier material blocks diffusion of carbon into the polysilicon, thereby reducing accumulation of carbon on the polysilicon surfaces. By reducing the accumulation of carbon, the opportunity for stiction due to the presence of the carbon is similarly reduced.