COBALT SULFIDE/REDUCED GRAPHITE OXIDE COMPOSITE AND APPLICATION THEREOF IN GAS SENSORS

    公开(公告)号:US20240360000A1

    公开(公告)日:2024-10-31

    申请号:US18037559

    申请日:2022-06-29

    发明人: Yanyan WANG

    摘要: A method for preparing a cobalt sulfide/reduced graphite oxide composite includes: preparing a glycerol-cobalt precursor by taking a water-soluble cobalt salt, a micromolecular alcohol solvent, and glycerol as raw materials; mixing the glycerol-cobalt precursor with an alkali liquor to prepare a Co(OH)2 nanoflower; calcining the Co(OH)2 nanoflower to obtain a Co3O4 nanoflower; subjecting the Co3O4 nanoflower to a reaction with a water-soluble sulfur salt to obtain a COS nanoflower, and mixing the COS nanoflower with graphite oxide and carrying out a heat treatment to obtain the composite. The response characteristics of a gas sensor to NO2 gas are studied at room temperature, and the graphite is complexed with a transition metal sulfide with unique morphology to construct a unique heterostructure. While expanding the specific surface area to increase the number of adsorption sites, the heterostructure of a contact surface is used to greatly enhance the charge-transfer efficiency.

    Preparation method for high density aluminum doped cobalt oxide

    公开(公告)号:US12006228B2

    公开(公告)日:2024-06-11

    申请号:US17842761

    申请日:2022-06-16

    IPC分类号: H01M4/525 C01G51/04

    摘要: The present invention discloses a preparation method for high density aluminum doped cobalt oxide, which comprises following steps: 1) adding a cobalt salt solution, an alkaline solution and an oxidizer to a reactor for reaction; adding an aluminum cobalt solution to the reaction system for reaction; stopping adding the aluminum cobalt solution after D50 reaches 3.5-4.0 μm, stopping the reaction when D50 reaches the desired particle size, thus obtaining aluminiferous cobalt oxyhydroxide slurry; 2) aging, dehydrating, washing and drying the aluminiferous cobalt oxyhydroxide slurry, thus obtaining aluminiferous cobalt oxyhydroxide powder; 3) calcining the aluminiferous cobalt oxyhydroxide powder, thus obtaining the target object. With the method of the present invention, doped aluminum can be perfectly embedded into cobalt oxide lattices, thus effectively enhancing the tap density and uniformity of aluminum doped cobalt oxide and improving the cycle performance and charge-discharge performance of batteries.