摘要:
A method of processing a hydrocarbon feed may comprise fractionating the hydrocarbon feed into a light stream and a heavy stream, where the light stream includes hydrocarbons boiling at less than 370° C., and the heavy stream includes hydrocarbons boiling at greater than greater than 370° C., hydrotreating the heavy stream to form a hydrotreated heavy stream, feeding the light stream to a first Fluid Catalytic Cracking (FCC) reaction zone, thereby producing a light product stream which includes light olefins, and feeding the hydrotreated heavy stream to a second Fluid Catalytic Cracking (FCC) reaction zone, thereby producing a heavy product stream which includes light olefins, where the first FCC reaction zone operates under more severe operating conditions than the second FCC reaction zone.
摘要:
According to an embodiment disclosed, a feedstock hydrocarbon may be processed by a method which may include separating the feedstock hydrocarbon into a lesser boiling point hydrocarbon fraction and a greater boiling point hydrocarbon fraction, cracking the greater boiling point hydrocarbon fraction in a high-severity fluid catalytic cracking reactor unit to form a catalytically cracked effluent, cracking the lesser boiling point hydrocarbon fraction in a steam cracker unit to form a steam cracked effluent, and separating one or both of the catalytically cracked effluent or the steam cracked effluent to form two or more petrochemical products. In one or more embodiments, the feedstock hydrocarbon may include crude oil and one of the petrochemical products may include light olefins.
摘要:
Methods and processes for moving towards optimizing one or more parameters in a parallel train comprising two hydrocarbon cracking facilities where the two facilities either have non-identical process unit configurations or are operating under non-identical process conditions are disclosed. These methods and processes use models to simulate the impact of interconnecting the facilities by partially withdrawing an intermediate stream from within one cracking facility and adding the partially withdrawn stream to the second cracking facility in order to better optimize the overall operation of the parallel train.
摘要:
The invention provides for a process and apparatus for simultaneous conversion of lighter and heavier hydrocarbon feedstocks into improved yields of light olefins in the range of C2 to C4, liquid aromatics in the range C6 to C8 mainly benzene, toluene, xylene and ethyl benzene and other useful products employing at least two different reactors operated in series with respect to catalyst flow and parallel with respect to feed flow under different regimes and process conditions with same catalyst system.
摘要:
The present invention discloses catalytic cracking apparatus and process, which are useful for catalytic cracking of heavy oils with a high heavy oil conversion, a high propylene yield and low dry gas and coke yields.
摘要:
An integrated hydrotreating, steam pyrolysis and coker process for the direct processing of a crude oil is provided to produce olefinic and aromatic petrochemicals, and petroleum coke. Crude oil and recycled coker liquid product are charged to a hydroprocessing zone operating under conditions effective to produce a hydroprocessed effluent which is thermally cracked in the presence of steam to produce a mixed product stream. The residual liquid fraction recovered upstream of the thermal cracking unit or within the thermal cracking unit is thermally cracked under conditions effective to produce coke and coker liquid product. The coker liquid product is recycled to the step of hydroprocessing while the petroleum coke is recovered. Hydrogen from the mixed product stream is purified and recycled to the hydroprocessing zone, and olefins, aromatics and pyrolysis fuel oil are recovered from the separated mixed product stream.
摘要:
Methods and apparatuses are provided for cracking a hydrocarbon. The method includes contacting a first hydrocarbon stream with a first cracking catalyst at a first cracking temperature in a first riser to produce a first riser effluent and a first spent catalyst. A second hydrocarbon stream is contacted with a second cracking catalyst at a second cracking temperature in a second riser to produce a second riser effluent and a second spent catalyst, where the second cracking temperature is less than the first cracking temperature. The first riser effluent and the second riser effluent are combined to produce a mixed riser effluent, and the mixed riser effluent is fractionated in a fractionation zone to produce a light cycle oil. The first spent catalyst and the second spent catalyst are combined in a reactor to produce a mixed spent catalyst.
摘要:
A hydrocarbon feed is passed to a first zone of a vaporization unit to separate a first vapor stream and a first liquid stream. The first liquid stream is passed to a second zone of the vaporization unit and contacted with a counter-current steam to produce a second vapor stream and a second liquid stream. The first vapor stream and the second vapor stream are cracked in the radiant section of the steam cracker to produce a cracked effluent. The second liquid stream is catalytically cracked to produce a cracked product. The cracked product is distilled to produce an overhead stream, a light cycle oil, and a heavy cycle oil. The light cycle oil is reacted with hydrogen in the presence of a catalyst to produce a hydrotreated light cycle oil. The hydrotreated light cycle oil and the overhead stream are fed to the vaporization unit.
摘要:
A process is described for maximizing the FCC middle distillates comprising the use of two different converters, operating in a coordinated manner that seeks to maximize the production of LCO for diesel, generating a specified gasoline and reducing fuel oil production. Converter “A” operates with a low contact time in the riser, of 0.2 to 1.5 sec. (preferably from 0.5 to 1.0 sec.) making a higher reaction temperature possible even at low severity, from 510° C. to 560° C. (preferably from 530° C. to 550° C.) and with a catalyst suitable to the maximization of LCO. Converter “B” possesses a high activity catalytic system, suited to cracking naphtha and DO generated in the first converter. Preferably, converter “B” has two separate risers, allowing the reaction temperatures of each to be adjusted independently according to the range most recommended for maximizing the cracking of each of the streams: 530° C. to 560° C. for the DO riser and 540° C. to 600° C. for the naphtha riser. The high-quality LCO stream generated by cracking at low severity in converter “A” is not contaminated by the poorer quality LCO generated by re-cracking the DO in converter “B,” since each converter has its own fractionating tower. The use of low contact time as a route for reducing severity in converter “A” geared towards the production of better quality LCO allows it to operate with a higher reaction temperature for the same LCO conversion and quality level, entailing greater operating reliability for the unit, and providing benefits for the heat balance of the converter. In existing units, the improvement in the heat balance provides leeway to the air blower via increased batch temperature, and makes room for processing more residual batches.
摘要:
Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain hydrogenated tail oil and other products; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions prior to contacting the hydrogenated tail oil and/or normal catalytic cracking feedstock oil with the cracking catalyst.