Abstract:
An online detection device underwater elements includes an LIBS system in a sealing pressure chamber and an external airflow control system. The airflow control system has a gas probe bin and a gas source. An opening is formed at one end of the gas probe bin while the other end and the sealing pressure chamber are hermetically partitioned through a glass window. A laser in the LIES system outputs laser to an underwater object surface to be detected for generating plasma spectra. A spectrometer collects plasma spectra returned along an original optical path. When the device operates in water, the balance gas storage tank produces gas with the same pressure as underwater. A flow model is invoked according to the current water pressure to accurately control the air flow rate to form a stable gas environment in the gas probe, which improves the plasma excitation and collection efficiency.
Abstract:
A system for monitoring at least one parameter of a fluid contained in a container includes a measuring device based on near-infrared spectroscopy designed to be submerged in the cited fluid to be monitored and to take measurements of the fluid. The measuring device includes a measuring area. The monitoring system includes a flotation system joined to the measuring device. The flotation system is arranged, during the use of the monitoring system, floating on the fluid to be monitored such that the measuring area of the measuring device is submerged in the fluid at a constant depth with respect to the level of fluid in the container, such that all the measurements taken by the measuring device are taken at the same depth with respect to the level of the fluid.
Abstract:
A submersible fluorometer (10), includes: an excitation module (40) for exciting the fluorophore; and a detection module (42) for detecting the light emitted by the excited fluorophore, wherein the excitation module (40) includes a first light source (44) including a first UV LED and having a first wavelength lower than 300 nm, the excitation module (40) includes a second light source (46) including a second UV LED and having a second wavelength lower than 300 nm, the first and second wavelengths being different from each other, and the fluorometer includes an electronic circuit having a plurality of printed circuits positioned one below the other.
Abstract:
An apparatus for accurately measuring carbon dioxide partial pressure even if the apparatus is disposed in an environment at a high ambient water pressure, such as in a deep sea environment. A through hole that penetrates a body portion is formed in the body portion. The body portion is connected to a light source unit and a light receiving element unit. A signal line is disposed to pass through the through hole formed in the body portion. The signal line electrically connects between an amplifier substrate of the light receiving element unit and a CPU substrate of the light source unit to transfer the detection result amplified by the amplifier substrate.
Abstract:
An apparatus for placement on or in a body of water for hyperspectral imaging of material in the water comprises an artificial light source and a hyperspectral imager. These are arranged so that in use light exits the apparatus beneath the surface of the water and is reflected by said material before re-entering the apparatus beneath the surface of the water and entering the hyperspectral imager. The hyperspectral imager is adapted to produce hyperspectral image data having at least two spatial dimensions.
Abstract:
An apparatus for placement on or in a body of water for hyperspectral imaging of material in the water comprises an artificial light source and a hyperspectral imager. These are arranged so that in use light exits the apparatus beneath the surface of the water and is reflected by said material before re-entering the apparatus beneath the surface of the water and entering the hyperspectral imager. The hyperspectral imager is adapted to produce hyperspectral image data having at least two spatial dimensions.
Abstract:
A multichannel fluorosensor includes an optical module and an electronic module combined in a watertight housing with an underwater connector. The fluorosensor has an integral calibrator for periodical sensitivity validation of the fluorosensor. The optical module has one or several excitation channels and one or several emission channels that use a mutual focusing system. To increase efficiency, the excitation and emission channels each have a micro-collimator made with one or more ball lenses. Each excitation channel has a light emitting diode and an optical filter. Each emission channel has a photodiode with a preamplifier and an optical filter. The electronic module connects directly to the optical module and includes a lock-in amplifier, a power supply and a controller with an A/D converter and a connector. The calibrator provides a response proportional to the excitation intensity, and matches with spectral parameter of fluorescence for the analyzed fluorescent substance.
Abstract:
A method involving the automatic, online dilution of polymer and/or colloid solutions, such that, when the diluted polymer stream flows through suitable detectors, non-equilibrium processes, such as polymerization, degradation and aggregation, can be monitored. The dilution involves a reacting or stock solution of polymer and/or colloid, and at least one solvent. The online dilution technique can also be used to assess the effects of solvent quality and other solutes on polymer/colloid characteristics and reactions, and also permits equilibrium characterization of polymers/colloids by making a single stock solution of the polymer/colloid. A device is developed that is capable of automatically and continuously extracting fluid from a polymer-containing vessel and mixing this with a solvent such that the final fluid is dilute enough that single particle light scattering, spectrophotometric and other measurements can be made on it. Whereas many sampling and dilution devices exist, the novelty of this invention consists in its ability to deal with very high viscosities, including those laden with bubbles, and to introduce only a short delay time between sampling and measurement. The device is ideally suited for situations where the viscosity of the polymer-containing vessel changes over a wide range during the course of a reaction; e.g. polymerization, polymer degradation, aggregation, and others. Furthermore, provision is made for modular conditioning stages, such as changing solvent conditions, evaporating monomer, filtering, etc. The amount of sample actually withdrawn for measurement is very low, normally on the order of 0.25 ml to 5 ml per hour. The device can also vary the dilution factor either automatically or manually during operation.
Abstract:
Method and apparatus for detecting the presence of hydrocarbons and other substance that fluoresces or absorbs light within a body of water which utilizes a controlled submersible vehicle scanning at or near the water bottom. The method utilizes a selected frequency light source as carried by the submersible to scan the water bottom, and the returned light energy, either at the wavelength of oil fluorescing in water or the source frequency backscatter, is detected and processed for the water bottom as well as a water region that is a selected distance above the water floor. Alternative forms of apparatus are disclosed for carrying out the functions of both oil fluorescence detection, and for obtaining differential absorption readings as to light source backscatter energy that is created by the ambient water and other factors in the water environment such as marine life, turbidity, etc.
Abstract:
A leak detection system includes a light source configured to output emitted light into a region of water, and a light detector configured to receive returned light from the region of the water and to output a detector signal indicative of the returned light. The leak detection system also includes at least one controller configured to detect hydrocarbons within the region of the water in response to detecting a hydrocarbon wavelength within the returned light, to determine at least one position of the hydrocarbons within the region of the water based on a time difference between a first time at which the emitted light is output from the light source and a second time at which the returned light at the hydrocarbon wavelength is received at the light detector, and to generate a three-dimensional model of a subsea structure based on the detector signal.