Abstract:
A backlight structure comprises a frame, a circuit board, and a connector. The frame has an opening. The circuit board is located below the frame and has a through hole, wherein the through hole aligns with the opening. The connector passes through the opening and the through hole, protrudes from a surface of the frame, and is electrically connected to the circuit board.
Abstract:
A hinge mechanism includes a first rotation assembly, a second rotation assembly substantially parallel to the first rotation assembly, a first connection member, and a second connection member. The first and second rotation assemblies include a first and second pivoting shafts and a first and second brackets sleeved on the first and second pivoting shafts, respectively, and both the first and second brackets includes an engaging portion eccentrically formed on one end respectively thereof. The first connection member includes two pivotal portions. The pivotal portions are rotatably connected to the engaging portions of the first bracket and the second bracket, respectively. The second connection member is sleeved on the first pivoting shaft and the second pivoting shaft.
Abstract:
A manufacturing process for a thermally enhanced package is disclosed. First, a substrate strip including at least a substrate is provided. Next, at least a chip is disposed on an upper surface of the substrate, and the chip is electrically connected to the substrate. Then, a prepreg and a heat dissipating metal layer are provided, and the heat dissipating metal layer is disposed on a first surface of the prepreg and a second surface of the prepreg faces toward the chip. Finally, the prepreg covers the chip by laminating the prepreg and the substrate.
Abstract:
A method for detaching a first material layer from a second material layer includes following steps: forming a high-magnetic-permeability material layer on a first material layer comprised of low-magnetic-permeability material; removing a portion of the high-magnetic-permeability material layer to expose a portion of the first material layer; epitaxially growing a second material layer comprised of low-magnetic-permeability material on the exposed portion of the first material layer and the high-magnetic-permeability material layer; cooling the first and second material layers; heating the high-magnetic-permeability material layer, thus detaching the first material layer from the second material layer.
Abstract:
A hinge mechanism includes a pivot shaft, a resilient member coiling around the pivot shaft, a first cam, a second cam, and a rolling assembly. The pivot shaft defines a through hole in a radial direction thereof. The first cam and the second cam are sleeved on the pivot shaft, the first cam defines two pairs of recesses at one end surface thereof, and the second cam defines a groove at one end surface thereof facing the first cam. The rolling assembly positioned between the first cam and the second cam includes a pin and two rolling bearings sleeved on opposite ends of the pin.
Abstract:
A manufacturing execution system (MES) with virtual-metrology capabilities and a manufacturing system including the MES are provided. The MES is built on a middleware architecture (such as an object request broker architecture), and includes an equipment manager, a virtual metrology system (VMS), a statistical process control (SPC) system, an alarm manager and a scheduler. The manufacturing system includes a first process tool, a second process tool, a metrology tool, the aforementioned MES, a first R2R (Run-to-Run) controller and a second R2R controller.
Abstract:
The present invention discloses B. oleracea plants resistant to clubroot disease. In particular, the plants of the present invention comprise a monogenic dominant resistance to the disease clubroot introgressed from B. rapa. This resistance provides improved resistance to the disease as compared to previously existing resistances in B. oleracea.
Abstract:
A network optimization device may receive a stream of data and generate a signature for a plurality of fixed length overlapping windows of the stream of data. The device may select a predetermined number of the generated signatures for each Ln-byte segment of the data stream, wherein Ln is greater than a length of each of the windows. The network device may store the selected signatures in a bucketed hash table that includes a linked-list of entries for each bucket.
Abstract:
A method for detaching a first material layer from a second material layer includes following steps. Firstly, a high-magnetic-permeability material layer is formed on a first material layer. Secondly, a second material layer is formed on the high-magnetic-permeability material layer. Thirdly, the first and second material layers are cooled such that the first and second material layers shrink, wherein the first and second material layers are low-magnetic-permeability materials. Finally, the high-magnetic-permeability material layer is heated by applying a high-frequency radiofrequency electromagnetic wave thereto such that the high-magnetic-permeability material layer expands, thus detaching the first material layer from the second material layer.
Abstract:
A method for activating network storage includes: a message processing server receives a network storage request from a client; the message processing server establishes a session with a history function (HF) according to the network storage request, and sends the content from the session in which the client participates to the HF through the session with the HF. A system for activating network storage, a message processing server, and a client are also provided. With the present invention, the network storage is implemented more conveniently, and the user experience is improved.