摘要:
A multi-chip package structure comprising a first chip, a patterned lamination layer, a plurality of first bumps, a second chip and second bumps is provided. The first chip has a first active surface. The patterned lamination layer is disposed on a portion area of the first active surface. The first chip has a plurality of first bonding pads disposed on the first active surface exposed by the patterned lamination layer and the patterned lamination layer has a plurality of second bonding pads disposed thereon. The second chip has a second active surface and the first bumps are disposed on the second active surface. The second chip is electrically connected to the first bonding pads through the first bumps. The second bumps are disposed on the second bonding pads. Moreover, the multi-chip package structure further comprises a component disposed on the first chip and electrically connects to the first bonding pads.
摘要:
A circuit structure of a redistribution layer (RDL) is suitable for a chip to define the circuits and the contact window required by the following bump process. The RDL is disposed on the active surface of the chip. The circuit structure of the RDL mainly includes a first titanium layer, a second titanium layer and a conductive layer. Wherein, the conductive layer is made of aluminum; the first titanium layer and the second titanium layer cover the two surfaces of the conductive layer, respectively. The connectivity between the first titanium layer or the second titanium layer and a macromolecule polymer is stronger than the connectivity between the conductive layer and the macromolecule polymer, so that the peeling or crack caused by poor connectivity between the conductive layer and the adjacent dielectric layers are significantly improved thereby.
摘要:
A semiconductor chip package mainly includes a semiconductor chip, a first dielectric layer disposed on the semiconductor chip, a plurality of conductive traces electrically connected to the semiconductor chip, a second dielectric layer disposed on the conductive traces and the first dielectric layer wherein a portion of the conductive traces are exposed from the second dielectric layer, and a plurality of contacts for external connection formed on the exposed portion of the conductive traces. The semiconductor chip has a surface including an active area, a dummy area surrounding the active area, and a plurality of bonding pads disposed on the active area. The bonding pads are electrically connected to the contacts by the conductive traces. The present invention further provides methods for manufacturing the semiconductor chip package.
摘要:
An improved method of integrally attaching a heat sink to an IC package for enhancing the thermal conductivity of the package. A heat sink matrix, which is dividable into a plurality of individual heat sinks, is attached to an IC package matrix, which is comprised of a plurality of individual IC packages abutting each other in a matrix arrangement. The IC package matrix and the heat sink matrix attached thereto are then simultaneously cut by means of a machine tool into a plurality of individually formed IC packages each with a heat sink attached; thereby, thermal conductivity of a conventional IC package is enhanced.
摘要:
A process for testing IC wafer is disclosed. Prior to electrically testing chips on a wafer, the wafer is pre-cut to form a plurality of grooves aligned with the scribe lines on the active surface of the wafer. A step of singulating the wafer is performed to form a plurality of individual chips after completing electrical or reliability test of the chips. Due to the pre-cutting step the chips are still integrated on the wafer for accurately probing and testing. And the testing step can obtain the influence of side chipping on the chips
摘要:
A semiconductor chip package generally comprises a lead frame, a semiconductor die and a plastic package body. The lead frame includes a plurality of leads and a window pad. The window pad is connected to the lead frame by connecting bars. The inner ends of the plurality of leads defines a central area. The window pad is disposed in the central area and has an opening defined therein. The semiconductor die is disposed in the opening of the window pad and has a plurality of bonding pads formed on the active surface thereof. The inner ends of the leads are interconnected to the bonding pads on the semiconductor die through a plurality of bonding wires. The lead frame, the semiconductor die and the bonding wires are encapsulated in the plastic package body wherein the lower surface of the lead frame and the backside surface of the semiconductor die are exposed through the plastic package body.
摘要:
A semiconductor package and a manufacturing method thereof are provided. The semiconductor package includes a substrate, a semiconductor element, a package body and a conductive part. The substrate has an electrical contact. The semiconductor element is disposed on the substrate. The package body covers the semiconductor element and defines a through hole from which the electrical contact is exposed. Wherein, the package body includes a resin body and a plurality of fiber layers. The fiber layers are disposed in the resin body and define a plurality of fiber apertures which is arranged as an array. The conductive part is electrically connected to the substrate through the through hole.
摘要:
The present invention relates to a stackable package having an embedded interposer and a method for making the same. The package includes a substrate, a chip, a first embedded interposer, a circuit layer and a solder mask. The substrate has an upper surface, a bottom surface and at least one connecting pad. The connecting pad is disposed adjacent to the upper surface. The chip is disposed adjacent to the upper surface of the substrate, and is electrically connected to the substrate. The first embedded interposer encapsulates the upper surface of the substrate and the chip. The to first embedded interposer includes at least one plating through hole. The plating through hole penetrates through the first embedded interposer, and is connected to the connecting pad of the substrate. The circuit layer is disposed adjacent to the first embedded interposer, and the plating through hole is connected to the circuit layer. The circuit layer includes at least one pad. The solder mask is disposed adjacent to the circuit layer, and exposes the pad. Therefore, the package has more pads for inputting/outputting, more flexibility for stacking a top package, and a reduced total thickness.
摘要:
A multi-chip package structure comprising a first chip, a patterned lamination layer, a plurality of first bumps, a second chip and second bumps is provided. The first chip has a first active surface. The patterned lamination layer is disposed on a portion area of the first active surface. The first chip has a plurality of first bonding pads disposed on the first active surface exposed by the patterned lamination layer and the patterned lamination layer has a plurality of second bonding pads disposed thereon. The second chip has a second active surface and the first bumps are disposed on the second active surface. The second chip is electrically connected to the first bonding pads through the first bumps. The second bumps are disposed on the second bonding pads. Moreover, the multi-chip package structure further comprises a component disposed on the first chip and electrically connects to the first bonding pads.
摘要:
A method of making a ball grid array package comprises the steps of: (a) providing a film having an opening defined therein; (b) placing the film on a substrate; (c) attaching a semiconductor chip onto the substrate such that the semiconductor chip is positioned in the opening of the film; (d) electrically coupling the semiconductor chip to the substrate; (e) providing a molding die having a runner, a gate and a molding cavity defined therein, wherein the runner is connected to the molding cavity through the gate; (f) closing and clamping the molding die in a manner that the semiconductor chip is positioned in the molding cavity wherein the edges of the molding cavity fit entirely within the opening of the film and the edges of the runners and the gates are entirely positioned against the film; (g) transferring a hardenable molding compound into the molding cavity; (h) hardening the molding compound; (i) unclamping and opening the molding die; and (j) simultaneously removing the film and degating. The film in accordance with the present invention is characterized in that the adhesive force between the film and the molding compound is greater than the adhesive force between the film and the substrate. This makes the film tend to adhere to the excess molding compound; hence, the film will be removed along with the excess molding compound during the step (j) thereby automating the molding process.