Abstract:
The present invention provides a semiconductor structure, comprising: a substrate; a gate stack located on the substrate and comprising at least a gate dielectric layer and a gate electrode layer; source/drain regions, located in the substrate on both sides of the gate stack; an STI structure, located in the substrate on both sides of the source/drain regions, wherein the cross-section of the STI structure is trapezoidal, Sigma-shaped or inverted trapezoidal depending on the type of the semiconductor structure. Correspondingly, the present invention further to provides a method of manufacturing the semiconductor structure. In the present invention, STI structures having different shapes can be combined with different stress fillers to apply tensile stress or compressive stress laterally to the channel, which will produce a positive impact on the electron mobility of NMOS and the hole mobility of PMOS and increase the channel current of the device, thereby effectively improving the performance of the semiconductor structure.
Abstract:
The present invention discloses a semiconductor device, which comprises a substrate, a buffer layer on the substrate, an inversely doped isolation layer on the buffer layer, a barrier layer on the inversely doped isolation layer, a channel layer on the barrier layer, a gate stack structure on the channel layer, and source and drain regions at both sides of the gate stack structure, characterized in that the buffer layer and/or the barrier layer and/or the inversely doped isolation layer are formed of SiGe alloys or SiGeSn alloys, and the channel layer is formed of a GeSn alloy. The semiconductor device according to the present invention uses a quantum well structure of SiGe/GeSn/SiGe to restrict transportation of carriers, and it introduces a stress through lattice mis-match to greatly increase the carrier mobility, thus improving the device driving capability so as to be adapted to high-speed and high-frequency application.
Abstract:
The present invention provides a manufacturing method for a semiconductor device having epitaxial source/drain regions, in which a diffusion barrier layer of the source/drain regions made of epitaxial silicon-carbon or germanium silicon-carbon are added on the basis of epitaxially growing germanium-silicon of the source/drain regions in the prior art process, and the introduction of the diffusion barrier layer of the source/drain regions prevents diffusion of the dopant in the source/drain regions, thus mitigating the SCE and DIBL effect. The use of the diffusion barrier layer for the source/drain regions can also reduce the dosage of HALO implantation in the subsequent step, thus if HALO is performed before epitaxial growth of the source/drain regions, impact on the surfaces of the source/drain regions can be alleviated; if HALO is performed after epitaxial growth of the source/drain regions, the stress release effect of the epitaxial layer of the source drain/regions caused by the implantation can be reduced as much as possible.
Abstract:
The present invention relates to a method of manufacturing a semiconductor device for improving the spacer mask. In the present invention, a barrier layer and a sacrificial layer are formed, and the portions of the upper part of the spacer whose left and right sides differ greatly are ground away to leave the portion similar to a rectangle at the bottom of the spacer, which is used as the mask to perform the subsequent spacer masking technology. Thus the undesirable influences to the subsequent etching caused by the asymmetric profile of the spacer can be reduced as much as possible.
Abstract:
The present invention discloses a semiconductor device, comprising substrates, a plurality of gate stack structures on the substrate, a plurality of gate spacer structures on both sides of each gate stack structure, a plurality of source and drain regions in the substrate on both sides of each gate spacer structure, the plurality of gate spacer structures comprising a plurality of first gate stack structures and a plurality of second gate stack structures, wherein each of the first gate stack structures comprises a first gate insulating layer, a first work function metal layer, a second work function metal diffusion blocking layer, and a gate filling layer; Each of the second gate stack structures comprises a second gate insulating layer, a first work function metal layer, a second work function metal layer, and a gate filling layer, characterized in that the first work function metal layer has a first stress, and the gate filling layer has a second stress. Two metal gate layers of different types and/or intensity of stress are formed, respectively, thus different stresses are applied to the channel regions of different MOSFETs effectively and accurately, the device carrier mobility is enhanced simply and efficiently, and the device performance is also enhanced.
Abstract:
A diffusion barrier layer, a metal interconnect arrangement and a method of manufacturing the same are disclosed. In one embodiment, the metal interconnect arrangement may comprise a conductive plug/interconnect wire for electrical connection, and a diffusion barrier layer provided on at least a portion of a surface of the conductive plug/interconnect wire. The diffusion barrier layer may comprise insulating amorphous carbon.
Abstract:
A method of forming a poly-silicon pattern may include forming an amorphous silicon pattern on a lower layer; forming a capping layer on the substrate covering the amorphous silicon pattern; poly-crystallizing the amorphous silicon pattern using an excimer laser annealing process; and removing the capping layer.
Abstract:
Provided are an inverter, a method of manufacturing the inverter, and a logic circuit including the inverter. The inverter may include a first transistor and a second transistor having different channel layer structures. A channel layer of the first transistor may include a lower layer and an upper layer, and a channel layer of the second transistor may be the same as one of the lower layer and the upper layer. At least one of the lower layer and the upper layer may be an oxide layer. The inverter may be an enhancement/depletion (E/D) mode inverter or a complementary inverter.
Abstract:
A semiconductor device and method thereof. The example method may include forming a semiconductor device, including forming a first layer on a substrate, the first layer including aluminum nitride (AlN), forming a second layer by oxidizing a surface of the first layer and forming a third layer on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes. The example semiconductor device may include a substrate including a first layer, the first layer including aluminum nitride (AlN), a second layer formed by oxidizing a surface of the first layer and a third layer formed on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes.
Abstract:
Example embodiments provide a nonvolatile memory device that may be integrated through stacking, a stack module, and a method of fabricating the nonvolatile memory device. In the nonvolatile memory device according to example embodiments, at least one bottom gate electrode may be formed on a substrate. At least one charge storage layer may be formed on the at least one bottom gate electrode, and at least one semiconductor channel layer may be formed on the at least one charge storage layer.