Abstract:
An electrostatic discharge (ESD) protection device includes a diode located in a substrate and an N-type metal oxide semiconductor (NMOS) device located in the substrate adjacent the diode, wherein both the diode and the NMOS are coupled to an input device, and at least a portion of the diode and at least a portion of the NMOS device collectively form an ESD protection device.
Abstract:
A semiconductor integrated circuit structure includes a plurality of diodes disposed in the substrate. These diodes are electrically coupled in series. At least one insertion region is disposed in the substrate between two of the diodes and a supply voltage node electrically coupled to the insertion region. Preferably, a guard ring surrounds the diodes.
Abstract:
An electrostatic discharge-protected MOS structure is disclosed. An electrostatic discharge-protected MOS structure includes a semiconductor substrate of a first type, a first well of the first type formed in the semiconductor substrate, and a second well of a second type disposed adjacent to the first well. The MOS structure further includes a source region, a drain region, and an oxide layer and a polysilicon layer for forming a gate electrode of the MOS structure. In addition, the MOS structure includes a parasitic SCR comprising at least a parasitic NPN bipolar transistor and a buried layer of the second type interposed between the second well and the semiconductor substrate. The buried layer functions to lower a resistance of the semiconductor substrate during an ESD event so that ESD currents generated by the parasitic SCR are dissipated through the buried layer and the semiconductor substrate, thereby protecting the MOS structure.
Abstract:
An ESD protection circuit is implemented for a semiconductor device having a first circuit system operating with a first power supply voltage and a first complementary power supply voltage, and a second circuit system operating with a second power supply voltage and a second complementary power supply voltage. The ESD protection circuit includes a first diode having an anode coupled to the first power supply voltage and a cathode coupled to a first node connecting the first circuit system and the second circuit system for preventing a crosstalk of current between the first power supply voltage and the second complementary power supply voltage. A first MOS transistor module is coupled between the first node and the first complementary power supply for selectively creating a current path from the first node to the first complementary supply voltage for dissipating an ESD current during an ESD event.
Abstract:
A transistor layout is disclosed for improving electrostatic discharge capabilities. The layout has a first gate region with a first active region and a second active region formed on two sides thereof, and a second gate region placed next to the second active region with a third active region placed on an opposing side of the second gate region from the second active region. A first and a second set of contacts formed on the first and the third active regions, and a third set of contacts formed on the second active region, wherein the third set of contacts are spaced in parallel with and offset from the other two sets of contacts such that no contact from the third set is aligned laterally with a contact from either the first or the second set of contacts.
Abstract:
An electrostatic discharge protection device comprising a multi-finger gate, a first lightly doped region of a second conductivity, a first heavily doped region of the second conductivity, and a second lightly doped region of the second conductivity. The multi-finger gate comprises a plurality of fingers mutually connected in parallel over an active region of a first conductivity. The first lightly doped region of a second conductivity is disposed in the semiconductor substrate and between two of the fingers. The first heavily doped region of the second conductivity is disposed in the first lightly doped region of the second conductivity. The second lightly doped region of the second conductivity is beneath and adjoins the first lightly doped region of the second conductivity.
Abstract:
An integrated circuit has functional circuitry coupled to a terminal. An electrostatic discharge protector can be coupled to the terminal to protect the functional circuitry from an electrostatic discharge. A substrate includes a first semiconductor material with a first dopant type. A plurality of drain segments adjoin the substrate. Each of the drain segments has a first conductor, a second conductor, and a third conductor. A central via set in a central region of the drain segment couples the second conductor to the third conductor. A peripheral via set in a peripheral region of the drain segment couples the first conductor to the second conductor. A plurality of source segments adjoin the substrate and laterally interlace with the drain segments. If an electrostatic discharge is detected at the terminal of the integrated circuit, an electrical current of the ESD is directed into the electrostatic discharge protector and distributed substantially uniformly among a plurality of resistive paths in the electrostatic discharge protector.
Abstract:
An electrostatic discharge (ESD) protection circuit and method thereof are presented. In some embodiments, a high voltage tolerant input/output circuit comprises an ESD detection circuit, a first first-type transistor, a first second-type transistor, and a second second-type transistor. The first first-type transistor and the first second-type transistor are coupled to a pad. The ESD detection circuit determines whether ESD occurs at the pad and, if so, couples the gates of the first and second second-type transistors to the second power rail.
Abstract:
A semiconductor device includes a first doped region disposed on a first well in a semiconductor substrate; a second doped region disposed on a second well adjacent to the first well in the semiconductor substrate, the second doped region having a dopant density higher than that of the second well; and a gate structure overlying parts of the first and second wells for controlling a current flowing between the first and second doped regions. A first spacing distance from an interface between the second doped region and the second well to its closest edge of the gate structure is greater than 200 percent of a second spacing distance from a center point of second doped region to the edge of the gate structure, thereby increasing impedance against an electrostatic discharge (ESD) current flowing between the first and second doped regions during an ESD event.
Abstract:
A semiconductor layout structure for an electrostatic discharge (ESD) protection circuit is disclosed. The semiconductor layout structure includes a first area, in which one or more devices are constructed for functioning as a silicon controlled rectifier, and a second area, in which at least one device is constructed for functioning as a trigger source that provides a triggering current to trigger the silicon controlled rectifier for dissipating ESD charges during an ESD event. The first area and the second area are placed adjacent to one another without having a resistance area physically interposed or electrically connected therebetween, such that the triggering current received by the silicon controlled rectifier is increased during the ESD event.