Abstract:
Transistors suitable for high voltage and high frequency operation. A nanowire is disposed vertically or horizontally on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first semiconductor material, a source region electrically coupled with a first end of the channel region, a drain region electrically coupled with a second end of the channel region, and an extrinsic drain region disposed between the channel region and drain region. The extrinsic drain region has a wider bandgap than that of the first semiconductor. A gate stack including a gate conductor and a gate insulator coaxially wraps completely around the channel region, drain and source contacts similarly coaxially wrap completely around the drain and source regions.
Abstract:
A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
Abstract:
A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
Abstract:
Embodiments of a phase-stable amorphous high-κ dielectric layer in a device and methods for forming the phase-stable amorphous high-κ dielectric layer in a device are generally described herein. Other embodiments may be described and claimed.
Abstract:
A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
Abstract:
In a metal gate replacement process, a gate electrode stack may be formed of a dielectric covered by a sacrificial metal layer covered by a polysilicon gate electrode. In subsequent processing of the source/drains, high temperature steps may be utilized. The sacrificial metal layer prevents reactions between the polysilicon gate electrode and the underlying high dielectric constant dielectric. As a result, adverse consequences of the reaction between the polysilicon and the high dielectric constant dielectric material can be reduced.
Abstract:
A transistor comprising a semiconductor including a source, a drain, and a channel interposed between the source and the drain; a first dielectric layer having a first thickness, the first dielectric layer being positioned on the channel; a second dielectric layer having a second thickness, the second dielectric layer being positioned on the first dielectric layer; and a gate electrode on the second dielectric layer, wherein the transistor gate is made of a mid-gap metal. A process comprising depositing a first dielectric layer on at least one surface of a semiconductor layer; depositing a second dielectric layer on the first dielectric layer; depositing a layer of mid-gap metal on the second dielectric layer; and patterning and etching the first dielectric layer, the second dielectric layer and the layer of mid-gap metal to create a gate electrode separated from the substrate by a first dielectric and a second dielectric. Other embodiments are disclosed and claimed.
Abstract:
Embodiments of the invention provide a device with a metal gate, a high-k gate dielectric layer and reduced oxidation of a substrate beneath the high-k gate dielectric layer. An oxygen-scavenging spacer layer on side walls of the high-k gate dielectric layer and metal gate may reduce such oxidation during high temperature processes.
Abstract:
A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
Abstract:
A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.