Abstract:
A memory device is provided. The memory device includes a memory array; a first circuit electrically connected to the memory array, and causing the memory array to be operated in a first mode; and a second circuit electrically connected to the memory array, and causing the memory array to be operated in a second mode.
Abstract:
A self-aligning stacked memory cell array structure and method for fabricating such structure. The memory cell array includes a stack of memory cells disposed adjacent to opposing sides of a conductive line that is formed within a trench. The memory cells are stacked such that the memory element surface of each memory cell forms a portion of the sidewall of the conductive line. The conductive line is formed within the trench such that electrical contact is made across the entire memory element surface of each memory cell. Such structure and method for making such structure is a self-aligning process that does not require the use of any additional masks.
Abstract:
A light-emitting diode (LED) package structure and a packaging method thereof are provided. The packaging method includes: forming first conductive layers on a silicon substrate, and forming a reflection cavity and electrode via holes from a top surface of the silicon substrate; forming a reflection layer on predetermined areas of a surface of the reflection cavity, and forming second conductive layers and metal layers on surfaces of the electrode via holes; and mounting a chip and forming an encapsulant, so as to fabricate the LED package structure. In the present invention, there is no need to perform at least two plating processes for connecting upper and lower conductive layers of the silicon substrate in the electrode via holes, and the problem of poor connection of the conductive layers in the electrode via holes can be avoided, thereby making the fabrication processes simplified and time-effective and also improving the overall production yield.
Abstract:
Phase change memory devices and methods for operating described herein are based on the discovery that, following an initial high current operation applied to a phase change memory cell to establish the high resistance reset state, the current-voltage (I-V) behavior of the memory cell under different bias voltages can be used to detect if the memory cell is a defect cell having poor data retention characteristics.
Abstract:
A 3D memory device includes an array of semiconductor body pillars and bit line pillars, dielectric charge trapping structures, and a plurality of levels of word line structures arranged orthogonally to the array of semiconductor body pillars and bit line pillars. The semiconductor body pillars have corresponding bit line pillars on opposing first and second sides, providing source and drain terminals. The semiconductor body pillars have first and second channel surfaces on opposing third and fourth sides. Dielectric charge trapping structures overlie the first and second channel surfaces, providing data storage sites on two sides of each semiconductor body pillar in each level of the 3D array. The device can be operated as a 3D AND-decoded flash memory.
Abstract:
A method of programming a phase change device includes selecting a desired threshold voltage (Vth) and applying a programming pulse to a phase change material in the phase change device. The applying of the programming pulse includes applying a quantity of energy to the phase change material to drive at least a portion of this material above a melting energy level. A portion of the energy applied to the phase change material is allowed to dissipate below the melting energy level. The shape of the energy dissipation from the phase change material is controlled until the energy applied to the phase change material is less than a quenched energy level, to cause the phase change device to have the desired Vth. A remaining portion of the energy applied to the phase change material is allowed to dissipate to an environmental level.
Abstract:
A 3D memory device is described which includes bottom and top memory cubes having respective arrays of vertical NAND string structures. A common source plane comprising a layer of conductive material is between the top and bottom memory cubes. The source plane is supplied a bias voltage such as ground, and is selectively coupled to an end of the vertical NAND string structures of the bottom and top memory cubes. Memory cells in a particular memory cube are read using current through the particular vertical NAND string between the source plane and a corresponding bit line coupled to another end of the particular vertical NAND string.
Abstract:
Memory devices described herein are programmed and erased by physical segregation of an electrically insulating layer out of a memory material to establish a high resistance state, and by re-absorption of at least a portion of the electrically insulating layer into the memory material to establish a low resistance state. The physical mechanism of programming and erasing includes movement of structure vacancies to form voids, and/or segregation of doping material and bulk material, to create the electrically insulating layer consisting of voids and/or dielectric doping material along an inter-electrode current path between electrodes.
Abstract:
A phase change memory device and a method for programming the same. The method includes determining a characterized lowest SET current and corresponding SET resistance for the phase change memory device. The method includes determining a characterized RESET current slope for the phase change memory device. The method also includes calculating a first current amplitude for a RESET pulse based on the characterized lowest SET current and the characterized RESET current slope. The method includes applying the RESET pulse to a target memory cell in the phase change memory device and measuring the resistance of the target memory cell. If the measured resistance is substantially less than a target resistance, the method further includes applying one or more additional RESET pulses. In one embodiment of the invention, the one or more additional RESET pulses have current amplitudes greater than a previously applied RESET pulse.
Abstract:
Memory devices and methods for operating such devices are described herein. A method is described herein for operating a memory cell comprising phase change material and programmable to a plurality of resistance states including a high resistance state and a lower resistance state. The method comprises applying a first bias arrangement to the memory cell to establish the lower resistance state, the first bias arrangement comprising a first voltage pulse. The method further comprises determining whether the memory cell is in the lower resistance state, and if the memory cell is not in the lower resistance state then applying a second bias arrangement to the memory cell. The second bias arrangement comprises a second voltage pulse having a pulse height greater than that of the first voltage pulse.