Abstract:
An on-chip memory cell comprises a tri-gate access transistor (145) and a tri-gate capacitor (155). The on-chip memory cell may be an embedded DRAM on a three-dimensional tri-gate transistor and capacitor structures which is fully compatible with existing tri-gate logic transistor fabrication process. Embodiments of the invention use the high fin aspect ratio and inherently superior surface area of the tri-gate transistors to replace the “trench” capacitor in a commodity DRAM with an inversion mode tri-gate capacitor. The tall sidewalls of the tri-gate transistor provide large enough surface area to provide storage capacitance in a small cell area.
Abstract:
The present invention is a semiconductor device comprising a semiconductor body having a top surface and laterally opposite sidewalls formed on a substrate. A gate dielectric layer is formed on the top surface of the semiconductor body and on the laterally opposite sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of the semiconductor body.
Abstract:
A metal layer is formed on a dielectric layer, which is formed on a substrate. After forming a masking layer on the metal layer, the exposed sides of the dielectric layer are covered with a polymer diffusion barrier.
Abstract:
A semiconductor device and a method for forming it are described. The semoiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
Abstract:
A group III-V material CMOS device may have NMOS and PMOS portions that are substantially the same through several of their layers. This may make the CMOS device easy to make and prevent coefficient of thermal expansion mismatches between the NMOS and PMOS portions.
Abstract:
Methods for uniformly tip doping a silicon body of a non-planar transistor and devices and systems formed by such methods. In one embodiment, a method can include vertical tip ion implantation of a silicon body with at least three surfaces on a substrate followed by conformal deposition of a dielectric material. The dielectric material can be selectively etched to expose a top surface of the silicon body followed by selective re-oxidation of the top surface for form a mask. The remaining dielectric material can be removed followed by angled ion implantation of at least two sidewalls of the silicon body. The mask can be removed resulting in a silicon body with uniform doping.
Abstract:
A transistor is described having a source electrode and a drain electrode. The transistor has at least one semiconducting carbon nanotube that is electrically coupled between the source and drain electrodes. The transistor has a gate electrode and dielectric material containing one or more quantum dots between the carbon nanotube and the gate electrode.
Abstract:
A system or apparatus including an N-type transistor structure including a gate electrode formed on a substrate and source and drain regions formed in the substrate; a contact to the source region; and a pinning layer disposed between the source region and the first contact and defining an interface between the pinning layer and the source region, wherein the pinning layer has donor-type surface states in a conduction band. A method including forming a transistor structure including a gate electrode on a substrate and source and drain regions formed in the substrate; depositing a pinning layer having donor-type surface states on the source and drain regions such that an interface is defined between the pinning layer and the respective one of the source and drain regions; and forming a first contact to the source region and a second contact to the drain region.
Abstract:
A method for fabricating a transistor having a Group III-V semiconductor substrate with an oxygen-free dielectric disposed between the substrate and a gate is described.
Abstract:
A method for ion implanting a tip source and drain region and halo region for a tri-gate field-effect transistor is described. A silicon body is implanted, in one embodiment, from six different angles to obtain ideal regions.