摘要:
A method of laser annealing a workpiece for reduction of warpage, slip defects and breakage, the method comprising (a) moving a workpiece through a laser beam in a x-axis first direction, (b) moving the workpiece in a y-axis second direction, (c) moving the workpiece through a laser beam in a minus x-axis first direction and repeating (a)-(c) until the workpiece is fully annealed in two successive laser annealing iterations.
摘要:
One aspect provides a method of manufacturing a semiconductor device having reduced N/P or P/N junction crystal disorder. In one aspect, this improvement is achieved by forming gate electrodes over a semiconductor substrate, amorphizing the semiconductor substrate that creates amorphous regions adjacent the gate electrodes to a depth in the semiconductor substrate. Source/drains are formed adjacent the gate electrodes by placing conductive dopants in the semiconductor substrate, wherein displaced substrate atoms and the conductive dopants are contained within the depth of the amorphous regions. The semiconductor substrate is annealed to re-crystallize the amorphous regions subsequent to forming the source/drains.
摘要:
The present invention provides a semiconductor device, a method of manufacture therefore and a method for manufacturing an integrated circuit including the same. The semiconductor device, among other elements, may include a substrate (110), as well as a nickel silicide region (170) located over the substrate (110), the nickel silicide region (170) having an amount of indium located therein.
摘要:
The present invention provides, for use in a semiconductor manufacturing process, a method (100) of preparing an ion-implantation source material. The method includes providing (110) a deliquescent ion implantation source material and mixing (110) the deliquescent ion implantation source material with an organic liquid to form a paste.
摘要:
A method for making a transistor within a semiconductor wafer. The method may include etching a recess at source/drain extension locations 90 and depositing SiGe within the recess to form SiGe source/drain extensions 90. Dopants are implanted into the SiGe source/drain extensions 90 and the semiconductor wafer 10 is annealed. Also, a transistor source/drain region 80, 90 having a SiGe source/drain extension 90 that contains evenly distributed dopants, is highly doped, and has highly abrupt edges.
摘要:
The present invention provides a semiconductor device, a method of manufacture therefore and a method for manufacturing an integrated circuit including the same. The semiconductor device, among other elements, may include a substrate (110), as well as a nickel silicide region (170) located over the substrate (110), the nickel silicide region (170) having an amount of indium located therein.
摘要:
The present invention provides a semiconductor device, a method of manufacture therefore and a method for manufacturing an integrated circuit including the same. The semiconductor device, among other elements, may include a substrate (110), as well as a nickel silicide region (170) located over the substrate (110), the nickel silicide region (170) having an amount of indium located therein.
摘要:
Methods are disclosed for forming ultra shallow junctions in semiconductor substrates using multiple ion implantation steps. The ion implantation steps include implantation of at least one electronically-active dopant as well as the implantation of at least two species effective at limiting junction broadening by channeling during dopant implantation and/or by thermal diffusion. Following dopant implantation, the electronically-active dopant is activated by thermal processing.
摘要:
The present invention pertains to formation of a PMOS transistor wherein a layer of silicon or SiGe inhibits p-type dopant from entering into an underlying gate dielectric layer. The p-type dopant can be added to a gate electrode material that overlies the silicon or SiGe layer and can diffuse down toward the silicon or SiGe layer. The layer of silicon or SiGe may be formed to a thickness of about 5 to 120 nanometers and doped with a dopant, such as indium (In), for example, to deter the p-type dopant from passing through the silicon or SiGe layer. The dopant may have a peak concentration within the layer of silicon or SiGe near the interface of the silicon or SiGe layer with the underlying layer of gate dielectric material. Allowing the gate electrode to be doped with the p-type dopant (e.g., boron) facilitates forming the transistor with an associated work function having a desired value (e.g., coincident with a Fermi level of about 4.8 to about 5.6 electron volts).
摘要:
Methods are described for fabricating MOS type transistors, in which multiple drain extension implants are performed using different dopant species of the same type. The implanted drain extension dopants are activated using separate anneal processes to provide active dopants of both species throughout the drain extension regions adjacent the transistor channel.