摘要:
A method for manufacturing resistive memory includes depositing a first conductive material layer on a substrate; etching the first conductive material layer to form a first signal line with a first surface; forming a memory material layer with a second surface coupled to the first signal line via the second surface contacting the first surface; depositing a second conductive material layer coupled to the memory material layer; etching the second conductive material layer to form a second signal line, wherein the area of the second surface is substantially larger or equal to the area of the overlapping region of the first signal line and the second signal line.
摘要:
A non-volatile memory (NVM) cell includes a silicon substrate having a main surface, a source region in a portion of the silicon substrate, a drain region in a portion of the silicon substrate, and a well region disposed in a portion of the silicon substrate between the source and drain regions. The cell includes a bottom oxide layer formed on the main surface of the substrate. The bottom oxide layer is disposed on a portion of the main surface proximate the well region. The cell includes a charge storage layer disposed above the bottom oxide layer, a dielectric tunneling layer disposed above the charge storage layer and a control gate formed above the dielectric tunneling layer. The dielectric tunneling layer includes a first oxide layer, a nitride layer and a second oxide layer. Erasing the NVM cell includes applying a positive gate voltage to inject holes from the gate.
摘要:
Memory devices are described along with methods for manufacturing. A memory device as described herein includes a plurality of memory cells located between word lines and bit lines. Each memory cell comprises a diode and a plurality of memory elements each comprising one or more metal-oxygen compounds, the diode and the plurality of memory elements arranged in electrical series along a current path between a corresponding word line and a corresponding bit line.
摘要:
A method for fabricating a memory is described. Word lines are provided in a first direction. Bit lines are provided in a second direction. A top electrode is formed connecting to a corresponding word line. A bottom electrode is formed connecting to a corresponding bit line. A resistive layer is formed on the bottom electrode. At least two separate L-shaped liners are formed, wherein each L-shaped liner has variable resistive materials on both ends of the L-shaped liner and each L-shaped liner is coupled between the top electrode and the resistive layer.
摘要:
Memory cells comprising: a semiconductor substrate having at least two source/drain regions separated by a channel region; a charge-trapping structure disposed above the channel region; and a gate disposed above the charge-trapping structure; wherein the charge-trapping structure comprises a bottom insulating layer, a first charge-trapping layer, and a second charge-trapping layer, wherein an interface between the bottom insulating layer and the substrate has a hydrogen concentration of less than about 3×1011/cm−2, and methods for forming such memory cells.
摘要翻译:存储单元包括:半导体衬底,具有由沟道区分开的至少两个源极/漏极区域; 设置在通道区域上方的电荷捕获结构; 以及设置在电荷捕获结构上方的栅极; 其中所述电荷捕获结构包括底部绝缘层,第一电荷俘获层和第二电荷俘获层,其中所述底部绝缘层和所述基底之间的界面的氢浓度小于约3×1011 / cm -2,以及形成这种记忆单元的方法。
摘要:
A memory, comprising a metal portion, a first metal layer and second metal oxide layer is provided. The first metal oxide layer is on the metal element, and the first metal oxide layer includes N resistance levels. The second metal oxide layer is on the first metal oxide layer, and the second metal oxide layer includes M resistance levels. The memory has X resistance levels and X is less than the summation of M and N, for minimizing a programming disturbance.
摘要:
A semiconductor device includes an insulating layer, a channel structure, an insulating structure and a gate. The channel structure includes a channel bridge for connecting two platforms. The bottom of the channel bridge is separated from the insulating layer by a distance, and the channel bridge has a plurality of separated doping regions. The insulating structure wraps around the channel bridge, and the gate wraps around the insulating structure.
摘要:
Memory devices are described along with methods for manufacturing and methods for operating. A memory device as described herein includes a plurality of memory cells located between word lines and bit lines. Memory cells in the plurality of memory cells comprise a diode and a metal-oxide memory element programmable to a plurality of resistance states including a first and a second resistance state, the diode of the memory element arranged in electrical series along a current path between a corresponding word line and a corresponding bit line. The device further includes bias circuitry to apply bias arrangements across the series arrangement of the diode and the memory element of a selected memory cell in the plurality of memory cells.
摘要:
A method of fabricating a non-volatile memory device at least comprises steps as follows. First, a substrate on which a bottom dielectric layer is formed is provided. Then, impurities are introduced through the bottom dielectric layer to the substrate, so as to form a plurality of spaced doped regions on the substrate. The structure is thermally annealed for pushing the spaced doped regions to diffuse outwardly. After annealing, a charge trapping layer is formed on the bottom dielectric layer, and a top dielectric layer is formed on the charge trapping layer. Finally, a gate structure (such as a polysilicon layer and a silicide) is formed on the top dielectric layer.
摘要:
A non-volatile memory cell may include a semiconductor substrate; a source region in a portion of the substrate; a drain region within a portion of the substrate; a well region within a portion of the substrate. The memory cell may further include a first carrier tunneling layer over the substrate; a charge storage layer over the first carrier tunneling layer; a second carrier tunneling layer over the charge storage layer; and a conductive control gate over the second carrier tunneling layer. Specifically, the drain region is spaced apart from the source region, and the well region may surround at least a portion of the source and drain regions. In one example, the second carrier tunneling layer provides hole tunneling during an erasing operation and may include at least one dielectric layer.