摘要:
One method disclosed herein includes forming first and second gate cap protection layers that encapsulate and protect a gate cap layer. A novel transistor device disclosed herein includes a gate structure positioned above a semiconductor substrate, a spacer structure positioned adjacent the gate structure, a layer of insulating material positioned above the substrate and around the spacer structure, a gate cap layer positioned above the gate structure and the spacer structure, and a gate cap protection material that encapsulates the gate cap layer, wherein portions of the gate cap protection material are positioned between the gate cap layer and the gate structure, the spacer structure and the layer of insulating material.
摘要:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
摘要:
Methods for forming a semiconductor device include forming a first spacer on a plurality of fins. A second spacer is formed on the first spacer, the second spacer being formed from a different material from the first spacer. Gaps between the fins are filled with a support material. The first spacer and second spacer are polished to expose a top surface of the plurality of fins. All of the support material is etched away after polishing the first spacer and second spacer. The plurality of fins is etched below a bottom level of the first spacer to form a fin cavity. Material from the first spacer is removed to expand the fin cavity. Fin material is grown directly on the etched plurality of fins to fill the fin cavity.
摘要:
A semiconductor structure includes a substrate, and a replacement metal gate (RMG) structure is attached to the substrate. The RMG structure includes a lower portion and an upper tapered portion. A source junction is disposed on the substrate and attached to a first low-k spacer portion. A drain junction is disposed on the substrate and attached to a second low-k spacer portion. A first oxide layer is disposed on the source junction, and attached to the first low-k spacer portion. A second oxide layer is disposed on the drain junction, and attached to the second low-k spacer portion. A cap layer is disposed on a top surface layer of the RMG structure and attached to the first oxide layer and the second oxide layer.
摘要:
A device includes first and second fins defined in a semiconductor substrate and a raised isolation post structure positioned between the first and second fins, wherein an upper surface of the raised isolation post structure is at a level that is approximately equal to or greater than a level corresponding to an upper surface of each of the first and second fins. A first space is defined by a sidewall of the first fin and a first sidewall of the raised isolation post structure, a second space is defined by a sidewall of the second fin and a second sidewall of the raised isolation post structure, and a gate structure is positioned around a portion of each of the first and second fins and around a portion of the raised isolation post structure, wherein at least portions of the gate structure are positioned in the first and second spaces.
摘要:
Semiconductor devices include a passivating layer over a pair of fins. A barrier extends through the passivating layer and between the pair of fins and that electrically isolates the fins. Electrical contacts are formed through the passivating layer to the fins. The electrical contacts directly contact sidewalls of the barrier.
摘要:
Semicondcutor devices include a passivating layer over a pair of fins. A barrier extends through the passivating layer and between the pair of fins and that electrically isolates the fins. Electrical contacts are formed through the passivating layer to the fins. The electrical contacts directly contact sidewalls of the barrier.
摘要:
A FinFET device includes a substrate, a gate structure positioned above the substrate, and sidewall spacers positioned adjacent to the gate structure. An epi semiconductor material is positioned in source and drain regions of the FinFET device and laterally outside of the sidewall spacers. A fin extends laterally under the gate structure and the sidewall spacers in a gate length direction of the FinFET device, wherein the end surfaces of the fin abut and engage the epi semiconductor material. A stressed material is positioned in a channel cavity located below the fin, above the substrate, and laterally between the epi semiconductor material, the stressed material having a top surface that abuts and engages a bottom surface of the fin, a bottom surface that abuts and engages the substrate, and end surfaces that abut and engage the epi semiconductor material.
摘要:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, an integrated circuit includes a semiconductor substrate. A first fin and a second fin are adjacent to each other extending from the semiconductor substrate. The first fin has a first upper section and the second fin has a second upper section. A first epi-portion overlies the first upper section and a second epi-portion overlies the second upper section. A first silicide layer overlies the first epi-portion and a second silicide layer overlies the second epi-portion. The first and second silicide layers are spaced apart from each other to define a lateral gap. A dielectric spacer is formed of a dielectric material and spans the lateral gap. A contact-forming material overlies the dielectric spacer and portions of the first and second silicide layers that are laterally above the dielectric spacer.
摘要:
One method disclosed includes, among other things, covering the top surface and a portion of the sidewalls of an initial fin structure with etch stop material, forming a sacrificial gate structure around the initial fin structure, forming a sidewall spacer adjacent the sacrificial gate structure, removing the sacrificial gate structure, with the etch stop material in position, to thereby define a replacement gate cavity, performing at least one etching process through the replacement gate cavity to remove a portion of the semiconductor substrate material of the fin structure positioned under the replacement gate cavity that is not covered by the etch stop material so as to thereby define a final fin structure and a channel cavity positioned below the final fin structure and substantially filling the channel cavity with a stressed material.