摘要:
Cu interconnection patterns with improved electromigration resistance are formed by depositing a barrier metal layer, such as W or WN, to line an opening in a dielectric layer. The exposed surface of the deposited barrier metal layer is treated with silane or dichlorosaline to form a thin silicon layer thereon. Cu is then deposited to fill the opening and reacted with the thin silicon layer to form a thin layer of Cu silicide at the interface between Cu and the barrier metal layer, thereby reducing the interface defect density and improving electromigration resistance.
摘要:
A semiconductor memory device such as a flash Electrically Erasable Programmable Read-Only Memory (Flash EEPROM) includes a floating gate with high data retention. A tungsten damascene local interconnect structure includes a silicon nitride etch stop layer which is formed using Plasma Enhanced Chemical Vapor Deposition (PECVD) at a temperature of at least 480° C. such that the etch stop layer has a very low concentration of hydrogen ions. The minimization of hydrogen ions, which constitute mobile positive charge carriers, in the etch stop layer, minimizes recombination of the hydrogen ions with electrons on the floating gate, and thereby maximizes data retention of the device.
摘要:
The adhesion of a diffusion barrier or capping layer to a Cu or Cu alloy interconnect member is significantly enhanced by treating the exposed surface of the Cu or Cu alloy interconnect member with an ammonia plasma followed by depositing the diffusion barrier layer on the treated surface. Embodiments include electroplating or electroless plating Cu or a Cu alloy to fill a damascene opening in a dielectric interlayer, chemical mechanical polishing, treating the exposed surface of the Cu/Cu alloy interconnect with an ammonia plasma, and depositing a silicon nitride diffusion barrier layer directly on the plasma treated surface.
摘要:
A method of manufacturing a semiconductor device with improved adhesion between the local interconnect etch stop layer and the thermal oxide in an isolation region. The thermal oxide is treated with an NH.sub.3 /N.sub.2 plasma. The local interconnect etch stop layer is either silicon nitride or silicon oxynitride. A layer of a dielectric material such as PECVD SiO.sub.2 is formed on the local interconnect etch stop layer.
摘要翻译:一种制造半导体器件的方法,该半导体器件具有改善局部互连蚀刻停止层和隔离区域中的热氧化物之间的粘合性。 热氧化物用NH 3 / N 2等离子体处理。 局部互连蚀刻停止层是氮化硅或氮氧化硅。 在局部互连蚀刻停止层上形成诸如PECVD SiO 2的电介质材料层。
摘要:
An oxide hard mask is formed between a deep ultraviolet photoresist and an anti-reflective coating to prevent interactions with the photoresist, thereby preventing reduction of a critical dimension of a patterned conductive layer. Embodiments include depositing a substantially nitrogen free oxide layer on the anti-reflective coating, such as a silicon oxide derived from tertaethyl orthosilicate by plasma enhanced chemical vapor deposition.
摘要:
A deposition method allows for the forming of a uniform dielectric stop layer that is substantially void of defects caused by outgassing effects. The stop layer is deposited in a reactor chamber at a higher than normal temperature of at least 480.degree. C. The stop layer is then combined with an overlying dielectric layer to provide an inter-level dielectric structure through which a local interconnect can be formed to provide a conductive path to one or more regions of the underlying semiconductor devices.
摘要:
A very thin (less than 350 angstrom) layer of silicon dioxide (SiO.sub.2) is produced using plasma-enhanced chemical vapor deposition (PECVD) by substantially increasing the time duration of pre-coat and soak time steps of the PECVD process and substantially reducing the flow of silane (SiH.sub.4), the applied high frequency power and the applied pressure in the PECVD process.
摘要:
A method is provided for removing an bottom anti-reflective coating (BARC) from a transistor gate during an etch back process associated with a nitride resistor protect etch process. The method includes removing a silicon oxynitride BARC, in-situ, during an oxide resistor protect etching process using a plasma formed with CF.sub.4 gas, CHF.sub.3 gas, O.sub.2 gas, and Argon (Ar) gas.
摘要:
A method of manufacturing a memory device includes forming a first dielectric layer over a substrate, forming a charge storage element over the first dielectric layer and forming an inter-gate dielectric over the charge storage element. The method also includes depositing a silicon control gate layer over the inter-gate dielectric using a reactant that contains chlorine.
摘要:
A method of manufacturing a memory device includes forming a first dielectric layer over a substrate, forming a charge storage element over the first dielectric layer and forming an inter-gate dielectric over the charge storage element. The method also includes depositing a silicon control gate layer over the inter-gate dielectric using a reactant that contains chlorine.