Abstract:
An apparatus and method are described for detecting and correcting data fetch errors within a processor core. For example, one embodiment of an instruction processing apparatus for detecting and recovering from data fetch errors comprises: at least one processor core having a plurality of instruction processing stages including a data fetch stage and a retirement stage; and error processing logic in communication with the processing stages to perform the operations of: detecting an error associated with data in response to a data fetch operation performed by the data fetch stage; and responsively performing one or more operations to ensure that the error does not corrupt an architectural state of the processor core within the retirement stage.
Abstract:
Embodiments of an invention for signaling software recoverable errors are disclosed. In one embodiment, a processor includes a first unit, a programmable indicator, and a second unit. The first unit is to detect a poison error. The programmable indicator is to indicate whether the poison error is signaled as a machine check error or as one of a fault and a system management interrupt. The second unit is to signal the poison error as one of a fault and a system management error responsive to the programmable indicator.
Abstract:
A method is described that includes deciding to enter a lower power state, and, shutting down a memory channel in a computer system in response where thereafter other memory channels in the computer system remain active so that computer remains operative while the memory channel is shutdown.
Abstract:
Embodiments of a hardware processor including a plurality of machine state registers (MSRs) are described. At least one of the MSRs includes an erroring logical processing (ELP) bit which when set, indicates that a particular thread executing on the hardware processor caused an error.
Abstract:
A method is described that includes detecting that a memory access of system management mode program code is attempting to reach program code outside of a protected region of memory by comparing a target memory address of a memory access instruction of the system management program code again information that defines confines of the protection region. The method also includes raising an error signal in response to the detecting.
Abstract:
Disclosed is an apparatus and a method to inject errors to a memory. In one embodiment, a dedicated interface includes an error injection system address register and an error injection mask register coupled to the error injection system address register. If the error injection system address register includes a system address that matches an incoming write address, the error injection mask register outputs an error to the memory.
Abstract:
Methods and apparatus for initiating secure operations in a microprocessor system are described. In one embodiment, a system includes a processor to execute a secured enter instruction, and a chipset to cause the system to enter a quiescent state during execution of the secured enter instruction.
Abstract:
Apparatuses, methods, and systems for reconfiguring a secure system are disclosed. In one embodiment, an apparatus includes a configuration storage location, a lock, and lock override logic. The configuration storage location is to store information to configure the apparatus. The lock is to prevent writes to the configuration storage location. The lock override logic is to allow instructions executed from sub-operating mode code to override the lock.
Abstract:
An augmented boot code module includes instructions to be executed by a processing unit during a boot process. The augmented boot code module also includes an encrypted version of a cryptographic key that can be decrypted with a cryptographic key that remains in the processing unit despite a reset of the processing unit. In one embodiment, the processing unit may decrypt the encrypted version of the cryptographic key and then use the decrypted key to establish a protected communication channel with a security processor, such as a trusted platform module (TPM). Other embodiments are described and claimed.
Abstract:
Embodiments of a hardware processor including a plurality of machine state registers (MSRs) are described. At least one of the MSRs includes an erroring logical processing (ELP) bit which when set, indicates that a particular thread executing on the hardware processor caused an error.