Abstract:
A method of wet etching semiconductor zinc tin oxide includes submerging a semiconductor zinc tin oxide film in a bath solution. The film is partially covered with a pattern of protective material, and the bath solution etches semiconductor zinc tin oxide film not covered by the protective material. A system for wet etching semiconductor zinc tin oxide includes a bath containing a bath solution. The bath solution is effective to wet etch the semiconductor zinc tin oxide.
Abstract:
A method for making a silicone hydrogel contact lens is provided. In one embodiment, a prepolymer mixture is polymerized in a lens mold in an atmosphere having less than about ppm oxygen to form a silicone hydrogel contact lens suitable for extended wear as characterized by producing less than 10% corneal swelling after a period of continuous wear of 7 days including normal sleep periods. In one embodiment, the prepolymer mixture comprises at least one oxyperm material containing hydrophilic groups, wherein the at least one oxyperm material is a siloxane-containing macromer or monomer, at least one ionperm material, and a cross-linking agent. In certain embodiments, the polymerization of the prepolymer mixture may be carried out in an atmosphere having less than about 1000 ppm oxygen.
Abstract:
In an OFDM system, a method for interpolating comprising the steps of: subdividing at least one frame among a plurality of frames into segments; and using at least two known quantities to interpolate a corresponding estimate.
Abstract:
A method for channel equalization is provided. The method comprises the steps of: subdividing a received symbol portion into segments wherein each segment is associated with a known, segmented channel characteristic among a set of segmented, known channel characteristics spanning the received symbol.
Abstract:
In frequency equalization, a received signals goes through frequency transform, the transformed signal is divided by a frequency transform of a channel response a method for equalization. The method comprises the step of: adjusting a quotient of the division by a weight function, wherein the function varies under a set of conditions; whereby for a frequency selective channel, deep fades are adjusted, and noise or interference are reduced.
Abstract:
Exemplary methods and apparatus are provided herein related to display systems. According to one exemplary embodiment, a method of forming a display is discussed that includes providing an embossable material and embossing the embossable material to form a plurality of features including at least one geometric adhesive portion.
Abstract:
A method of facilitating a chemical reaction includes raising a temperature of a protective layer covering a catalyst in the presence of a chemical solution.
Abstract:
The present invention concerns a fuel supply for a fuel cell. The fuel supply includes a fuel storage area configured to hold a fuel solution, a fuel solution outlet configured to pass the fuel solution from the fuel storage area, a waste storage area, a waste inlet configured to pass waste into the waste storage area, and a movable barrier separating the fuel storage area and the waste storage area. The movable barrier is configured to move as fuel solution is passed from the fuel storage area and waste solution is passed into the waste storage area to simultaneously decrease the volume of the fuel storage area and increase the volume of the waste storage area.
Abstract:
A process for creating and an apparatus employing shaped orifices in a semiconductor substrate. A first layer of material is applied on the semiconductor substrate then a second layer of material is then applied upon the first layer of material. An orifice image is then transferred to the first layer of material and a fluid-well image is transferred to the second layer of material. That portion of the second layer of material where the orifice image is located is then developed along with that portion of the first layer of material where the fluid well is located to define an orifice in the substrate.