Abstract:
An apparatus comprises a first photonic crystal structure having a first photonic band gap distribution and configured to support a first electromagnetic signal, wherein the first photonic band gap distribution may vary according to a second electromagnetic signal.
Abstract:
Devices, systems, and methods are provided for controlling an inflammatory response in a subject. Extracorporeal devices, systems, and methods are provided that alter the functional structure of one or more inflammatory mediators in the peripheral blood of the subject. The device or system is useful in a method for treating an inflammatory disease or condition in the subject.
Abstract:
Embodiments disclosed herein are directed to systems configured to determine an amount of alcohol in an alcohol-containing liquid discharged from a drinking vessel or an amount of the alcohol-containing liquid discharged from the drinking vessel, drinking vessels configured to measure alcohol content or other property of an alcohol-containing liquid held therein, other related components such as mat devices that facilitate determining the amount, and related methods. The systems, drinking vessels, and methods disclosed herein facilitate determination of an amount of alcohol in an alcohol-containing liquid discharged from a drinking vessel or an amount of alcohol-containing liquid discharged from the drinking vessel, which may be indicative of an amount of alcohol consumed by a drinker.
Abstract:
Devices, systems, and methods are described herein for controlling or modulating the levels of one or more target components in the blood and/or lymph of a vertebrate subject. Devices and systems are provided that include a body defining at least one lumen configured for fluid flow; at least one controllable flow barrier to fluid flow into the at least one lumen; at least one first reservoir disposed within the body and configured to include one or more bifunctional tags, wherein the one or more bifunctional tags are configured to selectively bind to one or more target components in one or more of blood fluid or lymph fluid of a vertebrate subject; at least one treatment region disposed within the at least one lumen; and at least one second reservoir disposed in the at least one treatment region and configured to include one or more reactive components, wherein the one or more reactive components are configured to sequester the one or more bifunctional tags when bound to the one or more target components.
Abstract:
Devices, systems, and methods are described herein for controlling or modulating the levels of one or more target components in the blood and/or lymph of a vertebrate subject. Devices and systems are provided that include a body defining at least one lumen configured for fluid flow; at least one controllable flow barrier to fluid flow into the at least one lumen; at least one first reservoir disposed within the body and configured to include one or more bifunctional tags, wherein the one or more bifunctional tags are configured to selectively bind to one or more target components in one or more of blood fluid or lymph fluid of a vertebrate subject; at least one treatment region disposed within the at least one lumen; and at least one second reservoir disposed in the at least one treatment region and configured to include one or more reactive components, wherein the one or more reactive components are configured to sequester the one or more bifunctional tags when bound to the one or more target components.
Abstract:
In an embodiment, a system includes an internal optical power transmitter configured to be disposed within a living subject. The internal optical power transmitter includes a power source configured to provide electrical energy and an electrical-optical converter operably coupled to the power source. The electrical-optical converter may be configured to convert at least a portion of the electrical energy into one or more optical power signals transdermally transmittable out of the living subject. The system further includes an external optical-electrical converter configured to convert the one or more optical power signals into one or more electrical power signals and at least one external device configured to be operably coupled to the external optical-electrical converter and powered by the one or more electrical power signals. Embodiments of methods, biocompatible electrical-optical converters, and internal optical power transmitters are also disclosed.
Abstract:
A method for enhancing an immune response in a vertebrate subject is described. The method includes providing at least one energy stimulus configured to modulate one or more nervous system components of the vertebrate subject, and administering one or more immunogen to the vertebrate subject, wherein the at least one energy stimulus and the one or more immunogen are provided in a combination and in a temporal sequence sufficient to enhance an immune response in the vertebrate subject.
Abstract:
Embodiments disclosed herein are directed to systems configured to power at least one device disposed in a living subject, apparatuses configured to be disposed in a living subject and export power stored in an energy-storage device, and related methods of powering at least one device disposed in the living subject.
Abstract:
Apparatus and systems are described that include physical media related to accepting at least one attribute associated with an individual from a licensed health care provider and/or presenting an output of an artificial sensory experience associated with a request to measure at least one effect of a bioactive agent on the attribute associated with individual.
Abstract:
Disclosed embodiments include methods of removing carbon dioxide from combustion gas from an engine of a vehicle, systems for removing carbon dioxide from combustion gas from an engine of a vehicle, vehicles, methods of managing carbon dioxide emissions from an engine of a vehicle, and computer software program products for managing carbon dioxide emissions from an engine of a vehicle.