摘要:
A method for generating n-type carriers in a semiconductor is disclosed. The method includes supplying a semiconductor having an atomic radius. Implanting an n-type dopant species into the semiconductor, which n-type dopant species has a dopant atomic radius. Implanting a compensating species into the semiconductor, which compensating species has a compensating atomic radius. Selecting the n-type dopant species and the compensating species in such manner that the size of the semiconductor atomic radius is inbetween the dopant atomic radius and the compensating atomic radius. A further method is disclosed for generating n-type carriers in germanium (Ge). The method includes setting a target concentration for the carriers, implanting a dose of an n-type dopant species into the Ge, and selecting the dose to correspond to a fraction of the target carrier concentration. Thermal annealing the Ge in such manner as to activate the n-type dopant species and to repair a least a portion of the implantation damage. Repeating the implantation and the thermal annealing until the target n-type carrier concentration has been reached.
摘要:
A semiconductor device and fabrication method include a strained semiconductor layer having a strain in one axis. A long fin and a short fin are formed in the semiconductor layer such that the long fin has a strained length along the one axis. An n-type transistor is formed on the long fin, and a p-type transistor is formed on the at least one short fin. The strain in the n-type transistor improves performance.
摘要:
A semiconductor device and method for fabricating a semiconductor device include providing a strained semiconductor layer having a first strained axis, forming an active region within a surface of the strained semiconductor layer where the active region has a longitudinal axis along the strained axis and forming gate structures over the active region. Raised source/drain regions are formed on the active regions above and over the surface of the strained semiconductor layer and adjacent to the gate structures to form transistor devices.
摘要:
A method of forming a low-defect, substantially relaxed SiGe-on-insulator substrate material is provided. The method includes first forming a Ge-containing layer on a surface of a first single crystal Si layer which is present atop a barrier layer that is resistant to Ge diffusion. A heating step is then performed at a temperature that approaches the melting point of the final SiGe alloy and retards the formation of stacking fault defects while retaining Ge. The heating step permits interdiffusion of Ge throughout the first single crystal Si layer and the Ge-containing layer thereby forming a substantially relaxed, single crystal SiGe layer atop the barrier layer. Moreover, because the heating step is carried out at a temperature that approaches the melting point of the final SiGe alloy, defects that persist in the single crystal SiGe layer as a result of relaxation are efficiently annihilated therefrom. In one embodiment, the heating step includes an oxidation process that is performed at a temperature from about 1230° to about 1320° C. for a time period of less than about 2 hours. This embodiment provides SGOI substrate that have minimal surface pitting and reduced crosshatching.
摘要:
High-quality, metastable SiGe alloys are formed on SOI substrates having an SOI layer of about 500 Å or less, the SiGe layers can remain substantially fully strained compared to identical SiGe layers formed on thicker SOI substrates and subsequently annealed and/or oxidized at high temperatures. The present invention thus provides a method of ‘frustrating’ metastable strained SiGe layers by growing them on thin, clean and high-quality SOI substrates.
摘要:
In the preferred embodiment of this invention a method is described to convert patterned SOI regions into patterned SGOI (silicon-germanium on oxide) by the SiGe/SOI thermal mixing process to further enhance performance of the logic circuit in an embedded DRAM. The SGOI region acts as a template for subsequent Si growth such that the Si is strained, and electron and holes in the Si have higher mobility.
摘要:
A method of forming a relaxed SiGe-on-insulator substrate having enhanced relaxation, significantly lower defect density and improved surface quality is provided. The method includes forming a SiGe alloy layer on a surface of a first single crystal Si layer. The first single crystal Si layer has an interface with an underlying barrier layer that is resistant to Ge diffusion. Next, ions that are capable of forming defects that allow mechanical decoupling at or near said interface are implanted into the structure and thereafter the structure including the implanted ions is subjected to a heating step which permits interdiffusion of Ge throughout the first single crystal Si layer and the SiGe layer to form a substantially relaxed, single crystal and homogeneous SiGe layer atop the barrier layer. SiGe-on-insulator substrates having the improved properties as well as heterostructures containing the same are also provided.
摘要:
Described herein is a method for delineating crystalline defects in a thin Si layer over a SiGe alloy layer. The method uses a defect etchant with a high-defect selectivity in Si. The Si is etched downed to a thickness that allows the defect pits to reach the underlying SiGe layer. A second etchant, which can be the same or different from the defect etchant, is then used which attacks the SiGe layer under the pits while leaving Si intact.
摘要:
A method for spalling local areas of a base substrate utilizing at least one stressor layer portion which is located on a portion, but not all, of an uppermost surface of a base substrate. The method includes providing a base substrate having a uniform thickness and a planar uppermost surface spanning across an entirety of the base substrate. At least one stressor layer portion having a shape is formed on at least a portion, but not all, of the uppermost surface of the base substrate. Spalling is performed which removes a material layer portion from the base substrate and provides a remaining base substrate portion. The material layer portion has the shape of the at least one stressor layer portion, while the remaining base substrate portion has at least one opening located therein which correlates to the shape of the at least one stressor layer.
摘要:
A method of controlled layer transfer is provided. The method includes providing a stressor layer to a base substrate. The stressor layer has a stressor layer portion located atop an upper surface of the base substrate and a self-pinning stressor layer portion located adjacent each sidewall edge of the base substrate. A spalling inhibitor is then applied atop the stressor layer portion of the base substrate, and thereafter the self-pinning stressor layer portion of the stressor layer is decoupled from the stressor layer portion. A portion of the base substrate that is located beneath the stressor layer portion is then spalled from the original base substrate. The spalling includes displacing the spalling inhibitor from atop the stressor layer portion. After spalling, the stressor layer portion is removed from atop a spalled portion of the base substrate.