Abstract:
An RF treatment apparatus includes a catheter with a catheter lumen. A removable needle electrode is positioned in the catheter lumen in a fixed relationship to the catheter. The needle electrode includes a needle lumen and a needle electrode distal end. A removable introducer is slidably positioned in the needle lumen. The introducer includes an introducer distal end. A first sensor is positioned on a surface of the needle electrode or the insulator. An RF power source is coupled to the needle electrode and a return electrode. An insulator sleeve is slidably positioned around the electrode and includes a second sensor. Resources are associated with the electrodes, sensors as well as the RF power source for maintaining a selected power at the electrode independent of changes in current or voltage.
Abstract:
A medical probe device of this invention comprising a catheter having a control end and a probe end. The probe end includes a stylet guide housing having at least one stylet port and stylet guide means for directing a flexible stylet outward through at least one stylet port and through intervening tissue to targeted tissues. A stylet is positioned in at least one of said stylet guide means, the stylet comprising a non-conductive sleeve having a RF electrode lumen and an optional a fluid supply lumen and a temperature sensor lumen therein. At least one portion of an opposed surface of the electrode lumen and the electrode can be spaced apart to define a liquid supply passageway for delivery of medicament liquid. The RF electrode enclosed within the non-conductive sleeve has a distal length optionally having at least one current focusing groove means thereon and a distal tip shaped to focus current crowding on its terminal end, whereby Rf current passing therefrom into surrounding tissue forms a lesion extending outward from the groove and tip. The focusing groove means can be a plurality of annular focusing grooves or a spiral focusing groove thereon.
Abstract:
A medical probe device comprises a catheter having a stylet guide housing with one or more stylet ports in a side wall thereof and a stylet guide for directing a flexible stylet outward through the stylet port and through intervening tissue at a preselected, adjustable angle to a target tissue. The total catheter assembly includes a stylet guide lumen communicating with the stylet port and a stylet positioned in said stylet guide lumen for longitudinal movement from the port through intervening tissue to a target tissue. The stylet can be an electrical conductor enclosed within a non-conductive layer, the electrical conductor being a radiofrequency electrode. Preferably, the non-conductive layer is a sleeve which is axially moveable on the electrical conductor to expose a selected portion of the electrical conductor surface in the target tissue. The stylet can also be a microwave antenna. The stylet can also be a hollow tube for delivering treatment fluid to the target tissue. It can also include a fiber optic cable for laser treatment. The catheter can include one or more inflatable balloons located adjacent to the stylet port for anchoring the catheter or dilation. Ultrasound transponders and temperature sensors can be attached to the probe end and/or stylet. The stylet guide can define a stylet path from an axial orientation in the catheter through a curved portion to a lateral orientation at the stylet port.
Abstract:
A device and method are provided for sealing a puncture in a body vessel. The device has an elongated body having a proximal end and a distal end sized to be positioned within a lumen of the body vessel; at least one closure composition precursor lumen within the elongated body having a entrance port adjacent the proximal end of the elongated body through which one or more fluent closure composition precursors can be delivered into the closure composition precursor lumen and an exit port adjacent the distal end of the elongated body through which the one or more fluent closure composition precursors can be delivered outside the vessel adjacent the vessel puncture; and a microwave antenna for delivering microwave energy adjacent the distal end of the elongated body to the fluent closure compound precursor. The microwave antenna according to this embodiment is preferably incorporated onto the elongated body adjacent the body distal end. Alternatively, the device can include a guidewire lumen and a guidewire which includes a microwave antenna.
Abstract:
An implantable electrode is provided for treating tissue in a patient with energy. In one variation of this embodiment, the implantable electrode includes a shaft having a length sufficient to extend from outside a body of the patient to adjacent a tissue site to be treated, an electrode core attached to a distal end of the shaft capable of delivering a form of energy to the tissue site, one or more wires which extend from a proximal end of the shaft to the electrode core such that an energy source external to the patient can be coupled to the wire for delivering energy to the electrode core, and a head formed at least in part of a soluble and porous material which at least partially surrounds the electrode core and becomes conductive when contacted with an energy conducting liquid. According to this variation, the shaft also includes a lumen for delivering energy conducting liquid from outside the body to the head.
Abstract:
A cell necrosis apparatus includes an introducer with a tissue piercing distal end. An RF electrode device includes a first RF electrode with a tissue piercing distal end, a second RF electrode with a tissue piercing distal end, and a third RF electrode with a tissue piercing distal end. The first and second electrodes each have an exterior non-insulated energy delivery surface and an exterior opposing insulated surface. The first, second and third RF electrodes are deployable from the introducer with the first and second RF electrodes exterior non-insulated energy delivery surfaces facing and surrounding the third RF electrode.
Abstract:
An ablation electrode carries a temperature sensing element for measuring the temperature of the tissue being ablated. A thermal insulating element associated with the sensing element blocks the transfer of heat energy from between the temperature sensing element and the body. The temperature sensing element therefore measures temperature without being affected by the surrounding thermal mass of the electrode.
Abstract:
A probe for cardiac diagnosis and/or treatment has a catheter tube. The distal end of the catheter tube carries first and second electrode elements. The probe includes a mechanism for steering the first electrode element relative to the second electrode element so that the user can move the first electrode element into and out of contact with endocardial tissue without disturbing the contact of the second electrode element with endocardial tissue, even through the two electrode elements are carried on a common catheter tube. The distal end can carry a three dimensional structure having an open interior area. One of electrode elements can be steered through the open interior area of the structure. Electrode elements on the exterior of the structure can be used for surface mapping, while the electrode element inside the structure is steered to ablate tissue.
Abstract:
A method and an apparatus is disclosed for delivering controlled heat to perform ablation to treat the benign prosthetic hypertrophy or hyperplasia (BPH). According to the method and the apparatus, the energy is transferred directly into the tissue mass which is to be treated in such a manner as to provide tissue ablation without damage to surrounding tissues. Automatic shut-off occurs when any one of a number of surrounding areas to include the urethra or surrounding mass or the adjacent organs exceed predetermined safe temperature limits. The constant application of the radio frequency energy over a maintained determined time provides a safe procedure which avoids electrosurgical and other invasive operations while providing fast relief to BPH with a short recovery time. The procedure may be accomplished in a doctor's office without the need for hospitalization or surgery.
Abstract:
An ablation apparatus has a balloon that is inserted into an organ of a body and ablates all or a selected portion of the inner layer of the organ. Electrolytic solution fills the balloon, and the balloon includes a plurality of apertures from which electrolytic solution flows from the balloon. The flow rate of electrolytic solution is dependent on the pressure applied to the balloon by the electrolytic solution. A conforming member, with a conductive surface and a back side, is made of a material that substantially conforms, to a shape of the inner layer of the organ and delivers the electrolytic solution and RF energy through the conductive surface to the inner layer. Advantageously, difficult to access areas are reached with the inclusion of the conforming member. Optionally positioned between the conforming member and the balloon is a porous membrane. A printed circuit is printed in or on the conforming member and delivers RF energy to selected sections of the inner layer. The printed circuit provides for the monitoring of impedance, temperature and circuit continuity. Additionally, the printed circuit can be multiplexed.