Abstract:
A method for manufacturing a semiconductor structure is provided, wherein the method includes the following operations. A substrate having a transistor is received, wherein the transistor includes a channel region and a gate on a first side of the channel region. A second side of the channel region of the transistor is exposed, wherein the second side is opposite to the first side. A metal oxide is formed on the second side of the channel region of the transistor, wherein the metal oxide contacts the channel region and is exposed to the environment. A semiconductor structure and an operation of a semiconductor structure thereof are also provided.
Abstract:
A semiconductor manufacturing method includes providing a wafer. A layer is formed over a surface of the wafer where the layer is able to form a eutectic layer with a conductive element. The layer is partially removed so as to form a plurality of mesas. The wafer is bonded to a substrate through the plurality of mesas. The substrate is thinned down to a thickness so as to be less than a predetermined value.
Abstract:
Dual-gate ion-sensitive field effect transistors (ISFETs) for disease diagnostics are disclosed herein. An exemplary dual-gate ISFET includes a gate structure and a fluidic gate structure disposed over opposite surfaces of a device substrate. The gate structure is disposed over a channel region defined between a source region and a drain region in the device substrate. The fluidic gate structure includes a sensing well that is disposed over the channel region. The sensing well includes a sensing layer and an electrolyte solution. The electrolyte solution includes a constituent that can react with a product of an enzymatic reaction that occurs when an enzyme-modified detection mechanism detects an analyte. The sensing layer can react with a first ion generated from the enzymatic reaction and a second ion generated from a reaction between the product of the enzymatic reaction and the constituent, such that the dual-gate ISFET generates an enhanced electrical signal.
Abstract:
Dual-gate ion-sensitive field effect transistors (ISFETs) for disease diagnostics are disclosed herein. An exemplary dual-gate ISFET includes a gate structure and a fluidic gate structure disposed over opposite surfaces of a device substrate. The gate structure is disposed over a channel region defined between a source region and a drain region in the device substrate. The fluidic gate structure includes a sensing well that is disposed over the channel region. The sensing well includes a sensing layer and an electrolyte solution. The electrolyte solution includes a constituent that can react with a product of an enzymatic reaction that occurs when an enzyme-modified detection mechanism detects an analyte. The sensing layer can react with a first ion generated from the enzymatic reaction and a second ion generated from a reaction between the product of the enzymatic reaction and the constituent, such that the dual-gate ISFET generates an enhanced electrical signal.
Abstract:
The present disclosure provides a biological field effect transistor (BioFET) device testing and processing methods, system and apparatus. A wafer-level bio-sensor processing tool includes a wafer stage, an integrated electro-microfluidic probe card, and a fluid supply and return. The integrated electro-microfluidic probe card includes a fluidic mount that may be transparent, a microfluidic channels in the fluidic mount, at least one microfluidic probe and a number of electronic probe tips at the bottom of the fluidic mount, fluidic and electronic input and output ports on the sides of the fluidic mount, and at least one handle lug on the fluidic mount. The method includes aligning a wafer, mounting the integrated electro-microfluidic probe card, flowing a test fluid, and measuring electrical properties. The tool may also be used for stamping or printing a fluid in the device area on the wafer.
Abstract:
A method of forming a semiconductor device includes depositing a light reflecting layer over a substrate. The method also includes forming a protection layer over the light reflecting layer. The method further includes forming an anti-reflective coating (ARC) layer over the protection layer. The method additionally includes forming an opening in the ARC layer, the protection layer and the light reflecting layer exposing the substrate. The method also includes removing the ARC layer in a wet solution comprising H2O2, the ARC layer being exposed to the H2O2 at a flow rate greater than about 10 standard cubic centimeters per minute (sccm).
Abstract translation:形成半导体器件的方法包括在衬底上沉积光反射层。 该方法还包括在光反射层上形成保护层。 该方法还包括在保护层上形成抗反射涂层(ARC)层。 该方法还包括在ARC层中形成开口,保护层和曝光衬底的光反射层。 该方法还包括在包含H 2 O 2的湿溶液中去除ARC层,ARC层以大于约10标准立方厘米每分钟(sccm)的流速暴露于H 2 O 2。
Abstract:
An integrated circuit structure includes a triple-axis accelerometer, which further includes a proof-mass formed of a semiconductor material; a first spring formed of the semiconductor material and connected to the proof-mass, wherein the first spring is configured to allow the proof-mass to move in a first direction in a plane; and a second spring formed of the semiconductor material and connected to the proof-mass. The second spring is configured to allow the proof-mass to move in a second direction in the plane and perpendicular to the first direction. The triple-axis accelerometer further includes a conductive capacitor plate including a portion directly over, and spaced apart from, the proof-mass, wherein the conductive capacitor plate and the proof-mass form a capacitor; an anchor electrode contacting a semiconductor region; and a transition region connecting the anchor electrode and the conductive capacitor plate, wherein the transition region is slanted.
Abstract:
The present disclosure provides a biological field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET includes a microwells having a sensing layer, a top metal stack under the sensing layer, and a multi-layer interconnect (MLI) under the top metal stack. The top metal stack includes a top metal and a protective layer over and peripherally surrounding the top metal.
Abstract:
The present disclosure provides biochips and methods of fabricating biochips. The method includes combining three portions: a transparent substrate, a first substrate with microfluidic channels therein, and a second substrate. Through-holes for inlet and outlet are formed in the transparent substrate or the second substrate. Various non-organic landings with support medium for bio-materials to attach are formed on the first substrate and the second substrate before they are combined. In other embodiments, the microfluidic channel is formed of an adhesion layer between a transparent substrate and a second substrate with landings on the substrates.
Abstract:
An integrated semiconductor device for manipulating and processing bio-entity samples is disclosed. The device includes a microfluidic channel that is coupled to fluidic control circuitry, a photosensor array coupled to sensor control circuitry, an optical component aligned with the photosensor array to manipulate a light signal before the light signal reaches the photosensor array, and a microfluidic grid coupled to the microfluidic channel and providing for transport of bio-entity sample droplets by electrowetting. The device further includes logic circuitry coupled to the fluidic control circuitry and the sensor control circuitry, with the fluidic control circuitry, the sensor control circuitry, and the logic circuitry being formed on a first substrate.