摘要:
Systems and related methods guide a movable electrode within an array of multiple electrodes located within the body. The systems and methods employ the movable electrode or at least one of the multiple electrodes on the array to generate and then sense electrical or sonic energy in a predetermined fashion to generates an output that locates the movable electrode within the array.
摘要:
Systems and methods analyze biopotential morphologies in myocardial tissue by comparing a template of a cardiac event of known diagnosis to one or more samples of a paced cardiac event. The systems and methods generate an output based upon the comparison. The comparison yields an output, which indicates how alike the input sample is to the input template. The output can be used by the physician, for example, to aid in the location of sites that are potentially appropriate for ablation. The systems and methods employing different pacing and/or comparative techniques to provide multiple outputs. The pacing techniques that the systems and methods employ can comprise entrainment pacing or pace mapping. Various alternative comparison techniques include matched filtering, cross correlation, norm of the difference, and symmetry matching.
摘要:
Analog or digital systems and methods filter an artifact from a composite signal, which comprises sample values arranged with respect to time. The systems and methods select sets of WL sample values in time-sequence along the composite signal and arrange the WL sample values of each set into ordered positions following a predetermined permutation. The systems and methods select one of the ordered positions, z, within each permutation. The systems and methods generate a filter output comprising the sample values occupying the ordered position, z, of each permutation in time-sequence with the composite signal. The systems and methods remove artifacts from signals derived from a biological event; for example, electrograms, electrocardiograms, electroencephalograms, electrogastrograms, electromyograms, and respiratory signals.
摘要:
A graphical user interface (GUI) is provided for assisting medical personnel in interpreting data collected by a multiple electrode catheter deployed within the body. The GUI generates and displays an image of the multiple electrode catheter. By manipulating appropriate controls, the medical personnel are able to change the orientation of the displayed image until it matches the orientation of the actual multiple electrode catheter as seen on a fluoroscope. Afterwards, the medical personnel can determine the relative position and orientation of the catheter by reference to the GUI generated image. To aid in interpreting data recovered by the catheter, the individual electrodes and splines are highlighted and labeled. Electrodes recovering particular types of physiological waveforms can be automatically identified and highlighted. Comments and anatomic landmarks can be inserted where desired to further assist in interpreting data. Views from various, virtual fluoroangles can be obtained, and various images can be recorded, stored and printed. The position of a roving electrode can also be indicated.
摘要:
Systems and methods identify the physical, mechanical, and functional attributes of multiple electrode arrays. The systems and methods provide a structure adapted for contact with tissue in an interior body region. The structure possesses a physical property affecting tissue contact. The systems and methods include an identification code that uniquely identifies the physical property of the structure, such as size of the structure, or shape of the structure, or symmetry or lack of symmetry of the structure, or a stiffness value of the structure, or combinations thereof. The systems and methods also include an identification element attached in association with the structure to retain the identification code. The identification element is adapted to provide an output representative of the identification code. The structure also carries at least one electrode. The electrode possesses-a physical property, or both. The identification code uniquely identifies both the physical property of the structure and the physical or functional property of the electrode. The identification element retains one or more of these physical or functional properties for output and consideration prior to use of the structure.
摘要:
An interface is associated with a structure which, in use, is deployed in an interior body region of a patient. The structure includes an operative element coupled to a controller, which establishes an operating condition for the operative element to perform a diagnostic or therapeutic procedure in the interior body region. The interface generates a first display comprising an image of the structure at least partially while the operative element performs the procedure. The interface also generates a second display comprising one or more data fields reflecting the operating condition of the controller. The interface enables selection of the first display or the second display for viewing on a display screen.
摘要:
Systems and methods for heating or ablating tissue use a porous electrode. The porous electrode comprises a wall having an interior area that contains an electrically conductive element. At least a portion of the wall comprises a porous material sized to block passage of blood cells while passing ions. The systems and methods position the porous electrode in contact with tissue. The systems and methods couple the electrically conductive element to a source of electrical energy. The systems and methods convey a fluid medium containing ions into the interior area to enable ionic transfer of electrical energy from the electrical conducting element through the fluid medium and porous material to ablate tissue. The systems and methods also specify differing electrical resistivities for the porous material based, at least in part, upon achieving differing desired tissue heating or ablation effects.
摘要:
Systems and related methods guide a movable electrode within an array of multiple electrodes located within the body. The systems and methods employ the movable electrode or at least one of the multiple electrodes on the array to generate and then sense electrical or sonic energy in a predetermined fashion to generates an output that locates the movable electrode within the array.
摘要:
An imaging element characterizes tissue morphology by analyzing perfusion patterns of a contrast media in tissue visualized by the imaging element, to identify infarcted tissue. In a preferred implementation, a catheter tube introduced into a heart region carries the imaging element, as well as a support structure spaced from the imaging element, which contacts endocardial tissue. The imaging element is moved as the imaging element visualizes tissue. A selected electrical event is sensed in surrounding myocardial tissue, which regulates movement of the imaging element. The support element stabilizes the moving imaging element as it visualizes tissue, providing resistance to dislodgment or disorientation despite the presence of dynamic forces.
摘要:
An imaging structure has a periphery adapted to selectively assume an expanded geometry and a collapsed geometry. The periphery of the imaging structure carries an array of spaced apart ultrasound transducers.